Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
from transformers import AutoTokenizer | |
# Initialize Blip model for image captioning | |
model_id = "dblasko/blip-dalle3-img2prompt" | |
blip_model = BlipForConditionalGeneration.from_pretrained(model_id) | |
blip_processor = BlipProcessor.from_pretrained(model_id) | |
# Initialize TTS model from Hugging Face | |
model_name = "facebook/tts-crdnn-baker-softmax" | |
tts_tokenizer = AutoTokenizer.from_pretrained(model_name) | |
tts_model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
tts = pipeline(task="text2speech", model=tts_model, tokenizer=tts_tokenizer) | |
def generate_caption(image): | |
# Generate caption from image using Blip model | |
inputs = blip_processor(images=image, return_tensors="pt") | |
pixel_values = inputs.pixel_values | |
generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50) | |
generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True, temperature=0.8, top_k=40, top_p=0.9)[0] | |
# Use TTS model to convert generated caption to audio | |
audio_output = tts(generated_caption) | |
audio_output.save_to_path("generated_audio.mp3") | |
return generated_caption, "generated_audio.mp3" | |
# Create a Gradio interface with an image input, a textbox output, a button, and an audio player | |
demo = gr.Interface( | |
fn=generate_caption, | |
inputs=gr.Image(), | |
outputs=[ | |
gr.Textbox(label="Generated caption"), | |
gr.Button("Convert to Audio"), | |
gr.Audio(type="player", label="Generated Audio") | |
], | |
live=True # ทำให้ Gradio ทำงานแบบไม่บล็อก | |
) | |
demo.launch(share=True) | |