Spaces:
Runtime error
Runtime error
File size: 1,734 Bytes
8fe5718 829b25c f1b8b86 6b4a9a6 829b25c 6d97bc1 829b25c f1b8b86 829b25c 6262d5a 829b25c 5fe2fff 829b25c 5fe2fff 829b25c 5fe2fff 829b25c ff7ab28 5fe2fff 97599f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import gradio as gr
from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from transformers import AutoTokenizer
# Initialize Blip model for image captioning
model_id = "dblasko/blip-dalle3-img2prompt"
blip_model = BlipForConditionalGeneration.from_pretrained(model_id)
blip_processor = BlipProcessor.from_pretrained(model_id)
# Initialize TTS model from Hugging Face
model_name = "facebook/tts-crdnn-baker-softmax"
tts_tokenizer = AutoTokenizer.from_pretrained(model_name)
tts_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tts = pipeline(task="text2speech", model=tts_model, tokenizer=tts_tokenizer)
def generate_caption(image):
# Generate caption from image using Blip model
inputs = blip_processor(images=image, return_tensors="pt")
pixel_values = inputs.pixel_values
generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50)
generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True, temperature=0.8, top_k=40, top_p=0.9)[0]
# Use TTS model to convert generated caption to audio
audio_output = tts(generated_caption)
audio_output.save_to_path("generated_audio.mp3")
return generated_caption, "generated_audio.mp3"
# Create a Gradio interface with an image input, a textbox output, a button, and an audio player
demo = gr.Interface(
fn=generate_caption,
inputs=gr.Image(),
outputs=[
gr.Textbox(label="Generated caption"),
gr.Button("Convert to Audio"),
gr.Audio(type="player", label="Generated Audio")
],
live=True # ทำให้ Gradio ทำงานแบบไม่บล็อก
)
demo.launch(share=True)
|