Spaces:
Runtime error
Runtime error
from transformers import pipeline, BlipForConditionalGeneration, BlipProcessor | |
import torchaudio | |
from torchaudio.transforms import Resample | |
import torch | |
import gradio as gr | |
from flask import Flask, jsonify, render_template_string | |
# Initialize TTS model from Hugging Face | |
tts_model_name = "Kamonwan/blip-image-captioning-new" | |
tts = pipeline(task="text-to-speech", model=tts_model_name) | |
# Initialize Blip model for image captioning | |
model_id = "Kamonwan/blip-image-captioning-new" | |
blip_model = BlipForConditionalGeneration.from_pretrained(model_id) | |
blip_processor = BlipProcessor.from_pretrained(model_id) | |
app = Flask(__name__) | |
def generate_caption(image): | |
# Generate caption from image using Blip model | |
inputs = blip_processor(images=image, return_tensors="pt") | |
pixel_values = inputs.pixel_values | |
generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50) | |
generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True, temperature=0.8, top_k=40, top_p=0.9)[0] | |
# Use TTS model to convert generated caption to audio | |
audio_output = tts(generated_caption) | |
audio_path = "generated_audio_resampled.wav" | |
torchaudio.save(audio_path, torch.tensor(audio_output[0]), audio_output["sampling_rate"]) | |
return generated_caption, audio_path | |
def generate_caption_api(): | |
image = request.files['image'].read() | |
generated_caption, audio_path = generate_caption(image) | |
return jsonify({'generated_caption': generated_caption, 'audio_path': audio_path}) | |
def index(): | |
return render_template_string(""" | |
<!DOCTYPE html> | |
<html lang="en"> | |
<head> | |
<meta charset="UTF-8"> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
<title>Gradio Interface</title> | |
</head> | |
<body> | |
<h1>Gradio Interface</h1> | |
{{ gr_interface|safe }} | |
</body> | |
</html> | |
""", gr_interface=demo.get_interface()) | |
if __name__ == '__main__': | |
demo = gr.Interface( | |
fn=generate_caption, | |
inputs=gr.Image(), | |
outputs=[ | |
gr.Textbox(label="Generated caption"), | |
gr.Button("Convert to Audio"), | |
gr.Audio(type="file", label="Generated Audio") | |
], | |
live=True | |
) | |
# Start Gradio interface | |
demo.launch(share=True) | |
# Start Flask app | |
app.run(host='0.0.0.0', port=5000) | |