File size: 2,443 Bytes
eaa3654
cf2cafe
 
 
 
8f2fa48
cf2cafe
6919033
eaa3654
6919033
6b4a9a6
829b25c
eaa3654
829b25c
 
6d97bc1
8f2fa48
 
829b25c
 
 
 
 
 
5fe2fff
829b25c
6919033
 
 
cf2cafe
6919033
829b25c
8f2fa48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from transformers import pipeline, BlipForConditionalGeneration, BlipProcessor
import torchaudio
from torchaudio.transforms import Resample
import torch
import gradio as gr
from flask import Flask, jsonify, render_template_string

# Initialize TTS model from Hugging Face
tts_model_name = "Kamonwan/blip-image-captioning-new"
tts = pipeline(task="text-to-speech", model=tts_model_name)

# Initialize Blip model for image captioning
model_id = "Kamonwan/blip-image-captioning-new"
blip_model = BlipForConditionalGeneration.from_pretrained(model_id)
blip_processor = BlipProcessor.from_pretrained(model_id)

app = Flask(__name__)

def generate_caption(image):
    # Generate caption from image using Blip model
    inputs = blip_processor(images=image, return_tensors="pt")
    pixel_values = inputs.pixel_values
    generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50)
    generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True, temperature=0.8, top_k=40, top_p=0.9)[0]

    # Use TTS model to convert generated caption to audio
    audio_output = tts(generated_caption)
    audio_path = "generated_audio_resampled.wav"
    torchaudio.save(audio_path, torch.tensor(audio_output[0]), audio_output["sampling_rate"])

    return generated_caption, audio_path

@app.route('/generate_caption', methods=['POST'])
def generate_caption_api():
    image = request.files['image'].read()
    generated_caption, audio_path = generate_caption(image)
    return jsonify({'generated_caption': generated_caption, 'audio_path': audio_path})

@app.route('/')
def index():
    return render_template_string("""
    <!DOCTYPE html>
    <html lang="en">
    <head>
        <meta charset="UTF-8">
        <meta name="viewport" content="width=device-width, initial-scale=1.0">
        <title>Gradio Interface</title>
    </head>
    <body>
        <h1>Gradio Interface</h1>
        {{ gr_interface|safe }}
    </body>
    </html>
    """, gr_interface=demo.get_interface())

if __name__ == '__main__':
    demo = gr.Interface(
        fn=generate_caption,
        inputs=gr.Image(),
        outputs=[
            gr.Textbox(label="Generated caption"),
            gr.Button("Convert to Audio"),
            gr.Audio(type="file", label="Generated Audio")
        ],
        live=True
    )

    # Start Gradio interface
    demo.launch(share=True)

    # Start Flask app
    app.run(host='0.0.0.0', port=5000)