Spaces:
Running
Running
File size: 12,173 Bytes
c533b68 d37849f c533b68 48c079f d24a68b fe5270d c533b68 d24a68b dd217c7 d24a68b c533b68 dd217c7 4dab15f d24a68b 21c1f7b dd217c7 d37849f dd217c7 c533b68 dd217c7 c533b68 dd217c7 d37849f c533b68 4dab15f 7f66593 4dab15f 7f66593 7804f9c 48c079f c533b68 7804f9c c533b68 7804f9c 4dab15f c533b68 4dab15f fe5270d 5975221 12443a2 c533b68 12443a2 fe5270d c533b68 1ce5fe7 fe5270d 4dab15f c533b68 1c93979 fe5270d 21c1f7b c533b68 1c93979 ebf74d7 c533b68 fe5270d 21c1f7b c533b68 fe5270d 1c93979 ebf74d7 21c1f7b ebf74d7 fe5270d 4dab15f a674527 0978fba 48c079f c533b68 0978fba c533b68 9e5b3c3 c533b68 1df5e0e c533b68 dd217c7 d37849f b6584c2 d37849f 48c079f d37849f 1df5e0e d37849f dd217c7 c533b68 dd217c7 c533b68 dd217c7 e35df77 a674527 4446bbe 21c1f7b c533b68 4dab15f c533b68 4dab15f 21c1f7b c533b68 21c1f7b 0ad45a6 21c1f7b 4dab15f 0ad45a6 21c1f7b 1c93979 21c1f7b 1c93979 21c1f7b 1c93979 ebf74d7 1c93979 21c1f7b ebf74d7 21c1f7b c533b68 1c93979 4dab15f 21c1f7b 0ad45a6 21c1f7b 1c93979 21c1f7b 0ad45a6 21c1f7b 1c93979 21c1f7b 0ad45a6 21c1f7b 1c93979 21c1f7b dd217c7 d37849f a674527 9416b46 a674527 c533b68 b9361ff c533b68 9416b46 c533b68 9416b46 a674527 c533b68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
#!/usr/bin/env python
# ruff: noqa: E402
import json
import tempfile
import os
import click
import gradio as gr
import numpy as np
import soundfile as sf
import torchaudio
from importlib.resources import files
from groq import Groq
from cached_path import cached_path
from transformers import AutoModelForCausalLM, AutoTokenizer
# Try to import spaces; if available, wrap functions for GPU support.
try:
import spaces
USING_SPACES = True
except ImportError:
USING_SPACES = False
def gpu_decorator(func):
"""
Decorator that wraps a function with GPU acceleration if running in a Spaces environment.
"""
if USING_SPACES:
return spaces.GPU(func)
return func
# Local package imports
from f5_tts.model import DiT, UNetT
from f5_tts.infer.utils_infer import (
load_vocoder,
load_model,
preprocess_ref_audio_text,
infer_process,
remove_silence_for_generated_wav,
save_spectrogram,
)
DEFAULT_TTS_MODEL = "F5-TTS"
DEFAULT_TTS_MODEL_CFG = [
"hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors",
"hf://SWivid/F5-TTS/F5TTS_Base/vocab.txt",
json.dumps(dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)),
]
# Load vocoder and TTS model
vocoder = load_vocoder()
def load_f5tts(
ckpt_path: str = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))
):
"""
Load the F5-TTS model from the given checkpoint path.
"""
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
return load_model(DiT, F5TTS_model_cfg, ckpt_path)
F5TTS_ema_model = load_f5tts()
@gpu_decorator
def generate_response(messages, apikey):
"""
Generate a chat response using the Groq API.
If messages is a string, wrap it as a user message.
"""
if isinstance(messages, str):
messages_payload = [{"role": "user", "content": messages}]
else:
messages_payload = messages
client = Groq(api_key=apikey)
chat_completion = client.chat.completions.create(
messages=messages_payload,
model="deepseek-r1-distill-llama-70b",
stream=False,
)
if chat_completion.choices and hasattr(chat_completion.choices[0].message, "content"):
return chat_completion.choices[0].message.content
return ""
@gpu_decorator
def process_audio_input(audio_path, text, apikey, history, conv_state):
"""
Process audio and/or text input from the user:
- If an audio file is provided, its transcript is obtained.
- The conversation state and history are updated.
Updated to construct the chat history as a list of dictionaries.
"""
if not audio_path and not text.strip():
return history, conv_state, ""
if audio_path:
# preprocess_ref_audio_text returns a tuple (audio, transcript)
_, text = preprocess_ref_audio_text(audio_path, text)
if not text.strip():
return history, conv_state, ""
# Wrap the user input in a dict.
user_msg = {"role": "user", "content": text}
conv_state.append(user_msg)
history.append(user_msg)
response = generate_response(conv_state, apikey)
assistant_msg = {"role": "assistant", "content": response}
conv_state.append(assistant_msg)
history.append(assistant_msg)
return history, conv_state, ""
@gpu_decorator
def infer(
ref_audio_orig,
ref_text,
gen_text,
remove_silence,
cross_fade_duration: float = 0.15,
nfe_step: int = 32,
speed: float = 1,
show_info=print,
):
"""
Generate speech audio using the F5-TTS system based on a reference audio/text and generated text.
"""
if not ref_audio_orig:
gr.Warning("Please provide reference audio.")
return gr.update(), gr.update(), ref_text
if not gen_text.strip():
gr.Warning("Please enter text to generate.")
return gr.update(), gr.update(), ref_text
# Preprocess the reference audio and text.
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
ema_model = F5TTS_ema_model # Use the default F5-TTS model.
final_wave, final_sample_rate, combined_spectrogram = infer_process(
ref_audio,
ref_text,
gen_text,
ema_model,
vocoder,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
speed=speed,
show_info=show_info,
progress=gr.Progress(),
)
if remove_silence:
# Write the generated waveform to a temporary file.
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
temp_audio_path = f.name
sf.write(temp_audio_path, final_wave, final_sample_rate)
# Process the file to remove silence.
remove_silence_for_generated_wav(temp_audio_path)
final_wave_tensor, _ = torchaudio.load(temp_audio_path)
final_wave = final_wave_tensor.squeeze().cpu().numpy()
os.unlink(temp_audio_path) # Clean up the temporary file.
# Save the spectrogram as a temporary PNG file.
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
spectrogram_path = tmp_spectrogram.name
save_spectrogram(combined_spectrogram, spectrogram_path)
return (final_sample_rate, final_wave), spectrogram_path, ref_text
with gr.Blocks() as app:
gr.Markdown(
"""
# Voice Chat
Have a conversation with an AI using your reference voice!
1. Upload a reference audio clip and optionally its transcript.
2. Load the chat model.
3. Record your message through your microphone.
4. The AI will respond using the reference voice.
"""
)
with gr.Row():
with gr.Column():
ref_audio_chat = gr.Audio(label="Reference Audio", type="filepath")
with gr.Column():
with gr.Accordion("Advanced Settings", open=False):
remove_silence_chat = gr.Checkbox(label="Remove Silences", value=True)
ref_text_chat = gr.Textbox(
label="Reference Text",
info="Optional: Leave blank to auto-transcribe",
lines=2,
)
system_prompt_chat = gr.Textbox(
label="System Prompt",
value=(
"You are not an AI assistant, you are whoever the user says you are. "
"You must stay in character. Keep your responses concise since they will be spoken out loud."
),
lines=2,
)
# Specify the chatbot type to avoid deprecation warnings.
chatbot_interface = gr.Chatbot(label="Conversation", type="messages")
with gr.Row():
with gr.Column():
audio_input_chat = gr.Microphone(label="Speak your message", type="filepath")
audio_output_chat = gr.Audio(autoplay=True)
with gr.Column():
groq_apikey = gr.Textbox(label="Your Groq API Key")
text_input_chat = gr.Textbox(label="Type your message", lines=1)
send_btn_chat = gr.Button("Send Message")
clear_btn_chat = gr.Button("Clear Conversation")
# Initialize the conversation state with the system prompt.
conversation_state = gr.State(
value=[
{
"role": "system",
"content": (
"You are not an AI assistant, you are whoever the user says you are. "
"You must stay in character. Keep your responses concise since they will be spoken out loud."
),
}
]
)
# Create a dummy hidden output to capture the extra (unused) output.
dummy_output = gr.Textbox(visible=False)
@gpu_decorator
def generate_audio_response(history, ref_audio, ref_text, remove_silence):
"""
Generate an audio response from the last AI message in the conversation.
Returns the generated audio, the (possibly updated) reference text, and the unchanged chat history.
"""
if not history or not ref_audio:
return None, ref_text, history
# Find the last assistant message in the history.
last_assistant = None
for message in reversed(history):
if message.get("role") == "assistant":
last_assistant = message
break
if last_assistant is None or not last_assistant.get("content", "").strip():
return None, ref_text, history
audio_result, _, ref_text_out = infer(
ref_audio,
ref_text,
last_assistant["content"],
remove_silence,
cross_fade_duration=0.15,
speed=1.0,
show_info=print,
)
return audio_result, ref_text_out, history
def clear_conversation():
"""
Clear the chat conversation and reset the conversation state.
"""
initial_state = [
{
"role": "system",
"content": (
"You are not an AI assistant, you are whoever the user says you are. "
"You must stay in character. Keep your responses concise since they will be spoken out loud."
),
}
]
return [], initial_state
def update_system_prompt(new_prompt):
"""
Update the system prompt and reset the conversation.
"""
initial_state = [{"role": "system", "content": new_prompt}]
return [], initial_state
# Set up callbacks so that when recording stops or text is submitted, the processing chain is run.
audio_input_chat.stop_recording(
process_audio_input,
inputs=[audio_input_chat, text_input_chat, groq_apikey, chatbot_interface, conversation_state],
outputs=[chatbot_interface, conversation_state, dummy_output],
).then(
generate_audio_response,
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
outputs=[audio_output_chat, ref_text_chat, chatbot_interface],
).then(lambda: None, None, audio_input_chat)
text_input_chat.submit(
process_audio_input,
inputs=[audio_input_chat, text_input_chat, groq_apikey, chatbot_interface, conversation_state],
outputs=[chatbot_interface, conversation_state, dummy_output],
).then(
generate_audio_response,
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
outputs=[audio_output_chat, ref_text_chat, chatbot_interface],
).then(lambda: None, None, text_input_chat)
send_btn_chat.click(
process_audio_input,
inputs=[audio_input_chat, text_input_chat, groq_apikey, chatbot_interface, conversation_state],
outputs=[chatbot_interface, conversation_state, dummy_output],
).then(
generate_audio_response,
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
outputs=[audio_output_chat, ref_text_chat, chatbot_interface],
).then(lambda: None, None, text_input_chat)
clear_btn_chat.click(clear_conversation, outputs=[chatbot_interface, conversation_state])
system_prompt_chat.change(
update_system_prompt,
inputs=system_prompt_chat,
outputs=[chatbot_interface, conversation_state],
)
@click.command()
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
@click.option("--host", "-H", default=None, help="Host to run the app on")
@click.option("--share", "-s", default=False, is_flag=True, help="Share the app via Gradio share link")
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
@click.option("--root_path", "-r", default=None, type=str, help="Root path for the application")
def main(port, host, share, api, root_path):
"""
Launch the Gradio app.
"""
app.queue(api_open=api).launch(
server_name=host,
server_port=port,
share=share,
show_api=api,
root_path=root_path,
)
if __name__ == "__main__":
main()
|