NeoPy commited on
Commit
9416b46
·
verified ·
1 Parent(s): dda73e4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -603
app.py CHANGED
@@ -1,10 +1,7 @@
1
  # ruff: noqa: E402
2
- # Above allows ruff to ignore E402: module level import not at top of file
3
-
4
  import json
5
  import re
6
  import tempfile
7
- from collections import OrderedDict
8
  from importlib.resources import files
9
 
10
  import click
@@ -51,36 +48,14 @@ DEFAULT_TTS_MODEL_CFG = [
51
  ]
52
 
53
 
54
- # load models
55
-
56
  vocoder = load_vocoder()
57
 
58
-
59
  def load_f5tts(ckpt_path=str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))):
60
  F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
61
  return load_model(DiT, F5TTS_model_cfg, ckpt_path)
62
 
63
-
64
- def load_e2tts(ckpt_path=str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))):
65
- E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
66
- return load_model(UNetT, E2TTS_model_cfg, ckpt_path)
67
-
68
-
69
- def load_custom(ckpt_path: str, vocab_path="", model_cfg=None):
70
- ckpt_path, vocab_path = ckpt_path.strip(), vocab_path.strip()
71
- if ckpt_path.startswith("hf://"):
72
- ckpt_path = str(cached_path(ckpt_path))
73
- if vocab_path.startswith("hf://"):
74
- vocab_path = str(cached_path(vocab_path))
75
- if model_cfg is None:
76
- model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
77
- return load_model(DiT, model_cfg, ckpt_path, vocab_file=vocab_path)
78
-
79
-
80
  F5TTS_ema_model = load_f5tts()
81
- E2TTS_ema_model = load_e2tts() if USING_SPACES else None
82
- custom_ema_model, pre_custom_path = None, ""
83
-
84
  chat_model_state = None
85
  chat_tokenizer_state = None
86
 
@@ -93,7 +68,6 @@ def generate_response(messages, model, tokenizer):
93
  tokenize=False,
94
  add_generation_prompt=True,
95
  )
96
-
97
  model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
98
  generated_ids = model.generate(
99
  **model_inputs,
@@ -101,7 +75,6 @@ def generate_response(messages, model, tokenizer):
101
  temperature=0.7,
102
  top_p=0.95,
103
  )
104
-
105
  generated_ids = [
106
  output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
107
  ]
@@ -129,23 +102,7 @@ def infer(
129
  return gr.update(), gr.update(), ref_text
130
 
131
  ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
132
-
133
- if model == "F5-TTS":
134
- ema_model = F5TTS_ema_model
135
- elif model == "E2-TTS":
136
- global E2TTS_ema_model
137
- if E2TTS_ema_model is None:
138
- show_info("Loading E2-TTS model...")
139
- E2TTS_ema_model = load_e2tts()
140
- ema_model = E2TTS_ema_model
141
- elif isinstance(model, list) and model[0] == "Custom":
142
- assert not USING_SPACES, "Only official checkpoints allowed in Spaces."
143
- global custom_ema_model, pre_custom_path
144
- if pre_custom_path != model[1]:
145
- show_info("Loading Custom TTS model...")
146
- custom_ema_model = load_custom(model[1], vocab_path=model[2], model_cfg=model[3])
147
- pre_custom_path = model[1]
148
- ema_model = custom_ema_model
149
 
150
  final_wave, final_sample_rate, combined_spectrogram = infer_process(
151
  ref_audio,
@@ -160,7 +117,6 @@ def infer(
160
  progress=gr.Progress(),
161
  )
162
 
163
- # Remove silence
164
  if remove_silence:
165
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
166
  sf.write(f.name, final_wave, final_sample_rate)
@@ -168,7 +124,6 @@ def infer(
168
  final_wave, _ = torchaudio.load(f.name)
169
  final_wave = final_wave.squeeze().cpu().numpy()
170
 
171
- # Save the spectrogram
172
  with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
173
  spectrogram_path = tmp_spectrogram.name
174
  save_spectrogram(combined_spectrogram, spectrogram_path)
@@ -176,407 +131,39 @@ def infer(
176
  return (final_sample_rate, final_wave), spectrogram_path, ref_text
177
 
178
 
179
- with gr.Blocks() as app_credits:
180
- gr.Markdown("""
181
- # Credits
182
-
183
- * [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
184
- * [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration
185
- * [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat
186
- """)
187
- with gr.Blocks() as app_tts:
188
- gr.Markdown("# Batched TTS")
189
- ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
190
- gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
191
- generate_btn = gr.Button("Synthesize", variant="primary")
192
- with gr.Accordion("Advanced Settings", open=False):
193
- ref_text_input = gr.Textbox(
194
- label="Reference Text",
195
- info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
196
- lines=2,
197
- )
198
- remove_silence = gr.Checkbox(
199
- label="Remove Silences",
200
- info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
201
- value=False,
202
- )
203
- speed_slider = gr.Slider(
204
- label="Speed",
205
- minimum=0.3,
206
- maximum=2.0,
207
- value=1.0,
208
- step=0.1,
209
- info="Adjust the speed of the audio.",
210
- )
211
- nfe_slider = gr.Slider(
212
- label="NFE Steps",
213
- minimum=4,
214
- maximum=64,
215
- value=32,
216
- step=2,
217
- info="Set the number of denoising steps.",
218
- )
219
- cross_fade_duration_slider = gr.Slider(
220
- label="Cross-Fade Duration (s)",
221
- minimum=0.0,
222
- maximum=1.0,
223
- value=0.15,
224
- step=0.01,
225
- info="Set the duration of the cross-fade between audio clips.",
226
- )
227
-
228
- audio_output = gr.Audio(label="Synthesized Audio")
229
- spectrogram_output = gr.Image(label="Spectrogram")
230
-
231
- @gpu_decorator
232
- def basic_tts(
233
- ref_audio_input,
234
- ref_text_input,
235
- gen_text_input,
236
- remove_silence,
237
- cross_fade_duration_slider,
238
- nfe_slider,
239
- speed_slider,
240
- ):
241
- audio_out, spectrogram_path, ref_text_out = infer(
242
- ref_audio_input,
243
- ref_text_input,
244
- gen_text_input,
245
- tts_model_choice,
246
- remove_silence,
247
- cross_fade_duration=cross_fade_duration_slider,
248
- nfe_step=nfe_slider,
249
- speed=speed_slider,
250
- )
251
- return audio_out, spectrogram_path, ref_text_out
252
-
253
- generate_btn.click(
254
- basic_tts,
255
- inputs=[
256
- ref_audio_input,
257
- ref_text_input,
258
- gen_text_input,
259
- remove_silence,
260
- cross_fade_duration_slider,
261
- nfe_slider,
262
- speed_slider,
263
- ],
264
- outputs=[audio_output, spectrogram_output, ref_text_input],
265
- )
266
-
267
-
268
- def parse_speechtypes_text(gen_text):
269
- # Pattern to find {speechtype}
270
- pattern = r"\{(.*?)\}"
271
-
272
- # Split the text by the pattern
273
- tokens = re.split(pattern, gen_text)
274
-
275
- segments = []
276
-
277
- current_style = "Regular"
278
-
279
- for i in range(len(tokens)):
280
- if i % 2 == 0:
281
- # This is text
282
- text = tokens[i].strip()
283
- if text:
284
- segments.append({"style": current_style, "text": text})
285
- else:
286
- # This is style
287
- style = tokens[i].strip()
288
- current_style = style
289
-
290
- return segments
291
-
292
-
293
- with gr.Blocks() as app_multistyle:
294
- # New section for multistyle generation
295
- gr.Markdown(
296
- """
297
- # Multiple Speech-Type Generation
298
-
299
- This section allows you to generate multiple speech types or multiple people's voices. Enter your text in the format shown below, and the system will generate speech using the appropriate type. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.
300
- """
301
- )
302
-
303
- with gr.Row():
304
- gr.Markdown(
305
- """
306
- **Example Input:**
307
- {Regular} Hello, I'd like to order a sandwich please.
308
- {Surprised} What do you mean you're out of bread?
309
- {Sad} I really wanted a sandwich though...
310
- {Angry} You know what, darn you and your little shop!
311
- {Whisper} I'll just go back home and cry now.
312
- {Shouting} Why me?!
313
- """
314
- )
315
-
316
- gr.Markdown(
317
- """
318
- **Example Input 2:**
319
- {Speaker1_Happy} Hello, I'd like to order a sandwich please.
320
- {Speaker2_Regular} Sorry, we're out of bread.
321
- {Speaker1_Sad} I really wanted a sandwich though...
322
- {Speaker2_Whisper} I'll give you the last one I was hiding.
323
- """
324
- )
325
-
326
- gr.Markdown(
327
- "Upload different audio clips for each speech type. The first speech type is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button."
328
- )
329
-
330
- # Regular speech type (mandatory)
331
- with gr.Row() as regular_row:
332
- with gr.Column():
333
- regular_name = gr.Textbox(value="Regular", label="Speech Type Name")
334
- regular_insert = gr.Button("Insert Label", variant="secondary")
335
- regular_audio = gr.Audio(label="Regular Reference Audio", type="filepath")
336
- regular_ref_text = gr.Textbox(label="Reference Text (Regular)", lines=2)
337
-
338
- # Regular speech type (max 100)
339
- max_speech_types = 100
340
- speech_type_rows = [regular_row]
341
- speech_type_names = [regular_name]
342
- speech_type_audios = [regular_audio]
343
- speech_type_ref_texts = [regular_ref_text]
344
- speech_type_delete_btns = [None]
345
- speech_type_insert_btns = [regular_insert]
346
-
347
- # Additional speech types (99 more)
348
- for i in range(max_speech_types - 1):
349
- with gr.Row(visible=False) as row:
350
- with gr.Column():
351
- name_input = gr.Textbox(label="Speech Type Name")
352
- delete_btn = gr.Button("Delete Type", variant="secondary")
353
- insert_btn = gr.Button("Insert Label", variant="secondary")
354
- audio_input = gr.Audio(label="Reference Audio", type="filepath")
355
- ref_text_input = gr.Textbox(label="Reference Text", lines=2)
356
- speech_type_rows.append(row)
357
- speech_type_names.append(name_input)
358
- speech_type_audios.append(audio_input)
359
- speech_type_ref_texts.append(ref_text_input)
360
- speech_type_delete_btns.append(delete_btn)
361
- speech_type_insert_btns.append(insert_btn)
362
-
363
- # Button to add speech type
364
- add_speech_type_btn = gr.Button("Add Speech Type")
365
-
366
- # Keep track of autoincrement of speech types, no roll back
367
- speech_type_count = 1
368
-
369
- # Function to add a speech type
370
- def add_speech_type_fn():
371
- row_updates = [gr.update() for _ in range(max_speech_types)]
372
- global speech_type_count
373
- if speech_type_count < max_speech_types:
374
- row_updates[speech_type_count] = gr.update(visible=True)
375
- speech_type_count += 1
376
- else:
377
- gr.Warning("Exhausted maximum number of speech types. Consider restart the app.")
378
- return row_updates
379
-
380
- add_speech_type_btn.click(add_speech_type_fn, outputs=speech_type_rows)
381
-
382
- # Function to delete a speech type
383
- def delete_speech_type_fn():
384
- return gr.update(visible=False), None, None, None
385
-
386
- # Update delete button clicks
387
- for i in range(1, len(speech_type_delete_btns)):
388
- speech_type_delete_btns[i].click(
389
- delete_speech_type_fn,
390
- outputs=[speech_type_rows[i], speech_type_names[i], speech_type_audios[i], speech_type_ref_texts[i]],
391
- )
392
-
393
- # Text input for the prompt
394
- gen_text_input_multistyle = gr.Textbox(
395
- label="Text to Generate",
396
- lines=10,
397
- placeholder="Enter the script with speaker names (or emotion types) at the start of each block, e.g.:\n\n{Regular} Hello, I'd like to order a sandwich please.\n{Surprised} What do you mean you're out of bread?\n{Sad} I really wanted a sandwich though...\n{Angry} You know what, darn you and your little shop!\n{Whisper} I'll just go back home and cry now.\n{Shouting} Why me?!",
398
- )
399
-
400
- def make_insert_speech_type_fn(index):
401
- def insert_speech_type_fn(current_text, speech_type_name):
402
- current_text = current_text or ""
403
- speech_type_name = speech_type_name or "None"
404
- updated_text = current_text + f"{{{speech_type_name}}} "
405
- return updated_text
406
-
407
- return insert_speech_type_fn
408
-
409
- for i, insert_btn in enumerate(speech_type_insert_btns):
410
- insert_fn = make_insert_speech_type_fn(i)
411
- insert_btn.click(
412
- insert_fn,
413
- inputs=[gen_text_input_multistyle, speech_type_names[i]],
414
- outputs=gen_text_input_multistyle,
415
- )
416
-
417
- with gr.Accordion("Advanced Settings", open=False):
418
- remove_silence_multistyle = gr.Checkbox(
419
- label="Remove Silences",
420
- value=True,
421
- )
422
-
423
- # Generate button
424
- generate_multistyle_btn = gr.Button("Generate Multi-Style Speech", variant="primary")
425
-
426
- # Output audio
427
- audio_output_multistyle = gr.Audio(label="Synthesized Audio")
428
-
429
- @gpu_decorator
430
- def generate_multistyle_speech(
431
- gen_text,
432
- *args,
433
- ):
434
- speech_type_names_list = args[:max_speech_types]
435
- speech_type_audios_list = args[max_speech_types : 2 * max_speech_types]
436
- speech_type_ref_texts_list = args[2 * max_speech_types : 3 * max_speech_types]
437
- remove_silence = args[3 * max_speech_types]
438
- # Collect the speech types and their audios into a dict
439
- speech_types = OrderedDict()
440
-
441
- ref_text_idx = 0
442
- for name_input, audio_input, ref_text_input in zip(
443
- speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list
444
- ):
445
- if name_input and audio_input:
446
- speech_types[name_input] = {"audio": audio_input, "ref_text": ref_text_input}
447
- else:
448
- speech_types[f"@{ref_text_idx}@"] = {"audio": "", "ref_text": ""}
449
- ref_text_idx += 1
450
-
451
- # Parse the gen_text into segments
452
- segments = parse_speechtypes_text(gen_text)
453
-
454
- # For each segment, generate speech
455
- generated_audio_segments = []
456
- current_style = "Regular"
457
-
458
- for segment in segments:
459
- style = segment["style"]
460
- text = segment["text"]
461
-
462
- if style in speech_types:
463
- current_style = style
464
- else:
465
- gr.Warning(f"Type {style} is not available, will use Regular as default.")
466
- current_style = "Regular"
467
-
468
- try:
469
- ref_audio = speech_types[current_style]["audio"]
470
- except KeyError:
471
- gr.Warning(f"Please provide reference audio for type {current_style}.")
472
- return [None] + [speech_types[style]["ref_text"] for style in speech_types]
473
- ref_text = speech_types[current_style].get("ref_text", "")
474
-
475
- # Generate speech for this segment
476
- audio_out, _, ref_text_out = infer(
477
- ref_audio, ref_text, text, tts_model_choice, remove_silence, 0, show_info=print
478
- ) # show_info=print no pull to top when generating
479
- sr, audio_data = audio_out
480
-
481
- generated_audio_segments.append(audio_data)
482
- speech_types[current_style]["ref_text"] = ref_text_out
483
-
484
- # Concatenate all audio segments
485
- if generated_audio_segments:
486
- final_audio_data = np.concatenate(generated_audio_segments)
487
- return [(sr, final_audio_data)] + [speech_types[style]["ref_text"] for style in speech_types]
488
- else:
489
- gr.Warning("No audio generated.")
490
- return [None] + [speech_types[style]["ref_text"] for style in speech_types]
491
-
492
- generate_multistyle_btn.click(
493
- generate_multistyle_speech,
494
- inputs=[
495
- gen_text_input_multistyle,
496
- ]
497
- + speech_type_names
498
- + speech_type_audios
499
- + speech_type_ref_texts
500
- + [
501
- remove_silence_multistyle,
502
- ],
503
- outputs=[audio_output_multistyle] + speech_type_ref_texts,
504
- )
505
-
506
- # Validation function to disable Generate button if speech types are missing
507
- def validate_speech_types(gen_text, regular_name, *args):
508
- speech_type_names_list = args
509
-
510
- # Collect the speech types names
511
- speech_types_available = set()
512
- if regular_name:
513
- speech_types_available.add(regular_name)
514
- for name_input in speech_type_names_list:
515
- if name_input:
516
- speech_types_available.add(name_input)
517
-
518
- # Parse the gen_text to get the speech types used
519
- segments = parse_speechtypes_text(gen_text)
520
- speech_types_in_text = set(segment["style"] for segment in segments)
521
-
522
- # Check if all speech types in text are available
523
- missing_speech_types = speech_types_in_text - speech_types_available
524
-
525
- if missing_speech_types:
526
- # Disable the generate button
527
- return gr.update(interactive=False)
528
- else:
529
- # Enable the generate button
530
- return gr.update(interactive=True)
531
-
532
- gen_text_input_multistyle.change(
533
- validate_speech_types,
534
- inputs=[gen_text_input_multistyle, regular_name] + speech_type_names,
535
- outputs=generate_multistyle_btn,
536
- )
537
-
538
-
539
  with gr.Blocks() as app_chat:
540
- gr.Markdown(
541
- """
542
  # Voice Chat
543
  Have a conversation with an AI using your reference voice!
544
  1. Upload a reference audio clip and optionally its transcript.
545
  2. Load the chat model.
546
  3. Record your message through your microphone.
547
  4. The AI will respond using the reference voice.
548
- """
549
- )
550
 
551
  if not USING_SPACES:
552
  load_chat_model_btn = gr.Button("Load Chat Model", variant="primary")
553
-
554
  chat_interface_container = gr.Column(visible=False)
555
 
556
  @gpu_decorator
557
  def load_chat_model():
558
  global chat_model_state, chat_tokenizer_state
559
  if chat_model_state is None:
560
- show_info = gr.Info
561
- show_info("Loading chat model...")
562
  model_name = "Qwen/Qwen2.5-3B-Instruct"
563
  chat_model_state = AutoModelForCausalLM.from_pretrained(
564
  model_name, torch_dtype="auto", device_map="auto"
565
  )
566
  chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
567
- show_info("Chat model loaded.")
568
-
569
  return gr.update(visible=False), gr.update(visible=True)
570
 
571
  load_chat_model_btn.click(load_chat_model, outputs=[load_chat_model_btn, chat_interface_container])
572
-
573
  else:
574
  chat_interface_container = gr.Column()
575
-
576
- if chat_model_state is None:
577
- model_name = "Qwen/Qwen2.5-3B-Instruct"
578
- chat_model_state = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
579
- chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
580
 
581
  with chat_interface_container:
582
  with gr.Row():
@@ -600,7 +187,6 @@ Have a conversation with an AI using your reference voice!
600
  )
601
 
602
  chatbot_interface = gr.Chatbot(label="Conversation")
603
-
604
  with gr.Row():
605
  with gr.Column():
606
  audio_input_chat = gr.Microphone(
@@ -625,11 +211,8 @@ Have a conversation with an AI using your reference voice!
625
  ]
626
  )
627
 
628
- # Modify process_audio_input to use model and tokenizer from state
629
  @gpu_decorator
630
  def process_audio_input(audio_path, text, history, conv_state):
631
- """Handle audio or text input from user"""
632
-
633
  if not audio_path and not text.strip():
634
  return history, conv_state, ""
635
 
@@ -641,17 +224,13 @@ Have a conversation with an AI using your reference voice!
641
 
642
  conv_state.append({"role": "user", "content": text})
643
  history.append((text, None))
644
-
645
  response = generate_response(conv_state, chat_model_state, chat_tokenizer_state)
646
-
647
  conv_state.append({"role": "assistant", "content": response})
648
  history[-1] = (text, response)
649
-
650
  return history, conv_state, ""
651
 
652
  @gpu_decorator
653
  def generate_audio_response(history, ref_audio, ref_text, remove_silence):
654
- """Generate TTS audio for AI response"""
655
  if not history or not ref_audio:
656
  return None
657
 
@@ -667,25 +246,16 @@ Have a conversation with an AI using your reference voice!
667
  remove_silence,
668
  cross_fade_duration=0.15,
669
  speed=1.0,
670
- show_info=print, # show_info=print no pull to top when generating
671
  )
672
  return audio_result, ref_text_out
673
 
674
  def clear_conversation():
675
- """Reset the conversation"""
676
- return [], [
677
- {
678
- "role": "system",
679
- "content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
680
- }
681
- ]
682
 
683
  def update_system_prompt(new_prompt):
684
- """Update the system prompt and reset the conversation"""
685
- new_conv_state = [{"role": "system", "content": new_prompt}]
686
- return [], new_conv_state
687
 
688
- # Handle audio input
689
  audio_input_chat.stop_recording(
690
  process_audio_input,
691
  inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
@@ -694,13 +264,8 @@ Have a conversation with an AI using your reference voice!
694
  generate_audio_response,
695
  inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
696
  outputs=[audio_output_chat, ref_text_chat],
697
- ).then(
698
- lambda: None,
699
- None,
700
- audio_input_chat,
701
- )
702
 
703
- # Handle text input
704
  text_input_chat.submit(
705
  process_audio_input,
706
  inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
@@ -709,13 +274,8 @@ Have a conversation with an AI using your reference voice!
709
  generate_audio_response,
710
  inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
711
  outputs=[audio_output_chat, ref_text_chat],
712
- ).then(
713
- lambda: None,
714
- None,
715
- text_input_chat,
716
- )
717
 
718
- # Handle send button
719
  send_btn_chat.click(
720
  process_audio_input,
721
  inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
@@ -724,165 +284,30 @@ Have a conversation with an AI using your reference voice!
724
  generate_audio_response,
725
  inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
726
  outputs=[audio_output_chat, ref_text_chat],
727
- ).then(
728
- lambda: None,
729
- None,
730
- text_input_chat,
731
- )
732
 
733
- # Handle clear button
734
- clear_btn_chat.click(
735
- clear_conversation,
736
- outputs=[chatbot_interface, conversation_state],
737
- )
738
 
739
- # Handle system prompt change and reset conversation
740
- system_prompt_chat.change(
741
- update_system_prompt,
742
- inputs=system_prompt_chat,
743
- outputs=[chatbot_interface, conversation_state],
744
- )
745
-
746
-
747
- with gr.Blocks() as app:
748
- gr.Markdown(
749
- f"""
750
- # E2/F5 TTS
751
-
752
- This is {"a local web UI for [F5 TTS](https://github.com/SWivid/F5-TTS)" if not USING_SPACES else "an online demo for [F5-TTS](https://github.com/SWivid/F5-TTS)"} with advanced batch processing support. This app supports the following TTS models:
753
-
754
- * [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
755
- * [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
756
-
757
- The checkpoints currently support English and Chinese.
758
-
759
- If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s with ✂ in the bottom right corner (otherwise might have non-optimal auto-trimmed result).
760
 
761
- **NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
762
- """
763
- )
764
-
765
- last_used_custom = files("f5_tts").joinpath("infer/.cache/last_used_custom_model_info.txt")
766
-
767
- def load_last_used_custom():
768
- try:
769
- custom = []
770
- with open(last_used_custom, "r", encoding="utf-8") as f:
771
- for line in f:
772
- custom.append(line.strip())
773
- return custom
774
- except FileNotFoundError:
775
- last_used_custom.parent.mkdir(parents=True, exist_ok=True)
776
- return DEFAULT_TTS_MODEL_CFG
777
-
778
- def switch_tts_model(new_choice):
779
- global tts_model_choice
780
- if new_choice == "Custom": # override in case webpage is refreshed
781
- custom_ckpt_path, custom_vocab_path, custom_model_cfg = load_last_used_custom()
782
- tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path, json.loads(custom_model_cfg)]
783
- return (
784
- gr.update(visible=True, value=custom_ckpt_path),
785
- gr.update(visible=True, value=custom_vocab_path),
786
- gr.update(visible=True, value=custom_model_cfg),
787
- )
788
- else:
789
- tts_model_choice = new_choice
790
- return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
791
-
792
- def set_custom_model(custom_ckpt_path, custom_vocab_path, custom_model_cfg):
793
- global tts_model_choice
794
- tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path, json.loads(custom_model_cfg)]
795
- with open(last_used_custom, "w", encoding="utf-8") as f:
796
- f.write(custom_ckpt_path + "\n" + custom_vocab_path + "\n" + custom_model_cfg + "\n")
797
-
798
- with gr.Row():
799
- if not USING_SPACES:
800
- choose_tts_model = gr.Radio(
801
- choices=[DEFAULT_TTS_MODEL, "E2-TTS", "Custom"], label="Choose TTS Model", value=DEFAULT_TTS_MODEL
802
- )
803
- else:
804
- choose_tts_model = gr.Radio(
805
- choices=[DEFAULT_TTS_MODEL, "E2-TTS"], label="Choose TTS Model", value=DEFAULT_TTS_MODEL
806
- )
807
- custom_ckpt_path = gr.Dropdown(
808
- choices=[DEFAULT_TTS_MODEL_CFG[0]],
809
- value=load_last_used_custom()[0],
810
- allow_custom_value=True,
811
- label="Model: local_path | hf://user_id/repo_id/model_ckpt",
812
- visible=False,
813
- )
814
- custom_vocab_path = gr.Dropdown(
815
- choices=[DEFAULT_TTS_MODEL_CFG[1]],
816
- value=load_last_used_custom()[1],
817
- allow_custom_value=True,
818
- label="Vocab: local_path | hf://user_id/repo_id/vocab_file",
819
- visible=False,
820
- )
821
- custom_model_cfg = gr.Dropdown(
822
- choices=[
823
- DEFAULT_TTS_MODEL_CFG[2],
824
- json.dumps(dict(dim=768, depth=18, heads=12, ff_mult=2, text_dim=512, conv_layers=4)),
825
- ],
826
- value=load_last_used_custom()[2],
827
- allow_custom_value=True,
828
- label="Config: in a dictionary form",
829
- visible=False,
830
- )
831
-
832
- choose_tts_model.change(
833
- switch_tts_model,
834
- inputs=[choose_tts_model],
835
- outputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
836
- show_progress="hidden",
837
- )
838
- custom_ckpt_path.change(
839
- set_custom_model,
840
- inputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
841
- show_progress="hidden",
842
- )
843
- custom_vocab_path.change(
844
- set_custom_model,
845
- inputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
846
- show_progress="hidden",
847
- )
848
- custom_model_cfg.change(
849
- set_custom_model,
850
- inputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
851
- show_progress="hidden",
852
- )
853
-
854
- gr.TabbedInterface(
855
- [app_tts, app_multistyle, app_chat, app_credits],
856
- ["Basic-TTS", "Multi-Speech", "Voice-Chat", "Credits"],
857
- )
858
 
859
 
860
  @click.command()
861
  @click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
862
  @click.option("--host", "-H", default=None, help="Host to run the app on")
863
- @click.option(
864
- "--share",
865
- "-s",
866
- default=False,
867
- is_flag=True,
868
- help="Share the app via Gradio share link",
869
- )
870
  @click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
871
- @click.option(
872
- "--root_path",
873
- "-r",
874
- default=None,
875
- type=str,
876
- help='The root path (or "mount point") of the application, if it\'s not served from the root ("/") of the domain. Often used when the application is behind a reverse proxy that forwards requests to the application, e.g. set "/myapp" or full URL for application served at "https://example.com/myapp".',
877
- )
878
  def main(port, host, share, api, root_path):
879
- global app
880
- print("Starting app...")
881
- app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api, root_path=root_path)
 
 
 
 
882
 
883
 
884
  if __name__ == "__main__":
885
- if not USING_SPACES:
886
- main()
887
- else:
888
- app.queue().launch()
 
1
  # ruff: noqa: E402
 
 
2
  import json
3
  import re
4
  import tempfile
 
5
  from importlib.resources import files
6
 
7
  import click
 
48
  ]
49
 
50
 
51
+ # Load models
 
52
  vocoder = load_vocoder()
53
 
 
54
  def load_f5tts(ckpt_path=str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))):
55
  F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
56
  return load_model(DiT, F5TTS_model_cfg, ckpt_path)
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  F5TTS_ema_model = load_f5tts()
 
 
 
59
  chat_model_state = None
60
  chat_tokenizer_state = None
61
 
 
68
  tokenize=False,
69
  add_generation_prompt=True,
70
  )
 
71
  model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
72
  generated_ids = model.generate(
73
  **model_inputs,
 
75
  temperature=0.7,
76
  top_p=0.95,
77
  )
 
78
  generated_ids = [
79
  output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
80
  ]
 
102
  return gr.update(), gr.update(), ref_text
103
 
104
  ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
105
+ ema_model = F5TTS_ema_model # Use F5-TTS by default
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
 
107
  final_wave, final_sample_rate, combined_spectrogram = infer_process(
108
  ref_audio,
 
117
  progress=gr.Progress(),
118
  )
119
 
 
120
  if remove_silence:
121
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
122
  sf.write(f.name, final_wave, final_sample_rate)
 
124
  final_wave, _ = torchaudio.load(f.name)
125
  final_wave = final_wave.squeeze().cpu().numpy()
126
 
 
127
  with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
128
  spectrogram_path = tmp_spectrogram.name
129
  save_spectrogram(combined_spectrogram, spectrogram_path)
 
131
  return (final_sample_rate, final_wave), spectrogram_path, ref_text
132
 
133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
  with gr.Blocks() as app_chat:
135
+ gr.Markdown("""
 
136
  # Voice Chat
137
  Have a conversation with an AI using your reference voice!
138
  1. Upload a reference audio clip and optionally its transcript.
139
  2. Load the chat model.
140
  3. Record your message through your microphone.
141
  4. The AI will respond using the reference voice.
142
+ """)
 
143
 
144
  if not USING_SPACES:
145
  load_chat_model_btn = gr.Button("Load Chat Model", variant="primary")
 
146
  chat_interface_container = gr.Column(visible=False)
147
 
148
  @gpu_decorator
149
  def load_chat_model():
150
  global chat_model_state, chat_tokenizer_state
151
  if chat_model_state is None:
152
+ gr.Info("Loading chat model...")
 
153
  model_name = "Qwen/Qwen2.5-3B-Instruct"
154
  chat_model_state = AutoModelForCausalLM.from_pretrained(
155
  model_name, torch_dtype="auto", device_map="auto"
156
  )
157
  chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
158
+ gr.Info("Chat model loaded.")
 
159
  return gr.update(visible=False), gr.update(visible=True)
160
 
161
  load_chat_model_btn.click(load_chat_model, outputs=[load_chat_model_btn, chat_interface_container])
 
162
  else:
163
  chat_interface_container = gr.Column()
164
+ model_name = "Qwen/Qwen2.5-3B-Instruct"
165
+ chat_model_state = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
166
+ chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
 
 
167
 
168
  with chat_interface_container:
169
  with gr.Row():
 
187
  )
188
 
189
  chatbot_interface = gr.Chatbot(label="Conversation")
 
190
  with gr.Row():
191
  with gr.Column():
192
  audio_input_chat = gr.Microphone(
 
211
  ]
212
  )
213
 
 
214
  @gpu_decorator
215
  def process_audio_input(audio_path, text, history, conv_state):
 
 
216
  if not audio_path and not text.strip():
217
  return history, conv_state, ""
218
 
 
224
 
225
  conv_state.append({"role": "user", "content": text})
226
  history.append((text, None))
 
227
  response = generate_response(conv_state, chat_model_state, chat_tokenizer_state)
 
228
  conv_state.append({"role": "assistant", "content": response})
229
  history[-1] = (text, response)
 
230
  return history, conv_state, ""
231
 
232
  @gpu_decorator
233
  def generate_audio_response(history, ref_audio, ref_text, remove_silence):
 
234
  if not history or not ref_audio:
235
  return None
236
 
 
246
  remove_silence,
247
  cross_fade_duration=0.15,
248
  speed=1.0,
249
+ show_info=print,
250
  )
251
  return audio_result, ref_text_out
252
 
253
  def clear_conversation():
254
+ return [], [{"role": "system", "content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud."}]
 
 
 
 
 
 
255
 
256
  def update_system_prompt(new_prompt):
257
+ return [], [{"role": "system", "content": new_prompt}]
 
 
258
 
 
259
  audio_input_chat.stop_recording(
260
  process_audio_input,
261
  inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
 
264
  generate_audio_response,
265
  inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
266
  outputs=[audio_output_chat, ref_text_chat],
267
+ ).then(lambda: None, None, audio_input_chat)
 
 
 
 
268
 
 
269
  text_input_chat.submit(
270
  process_audio_input,
271
  inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
 
274
  generate_audio_response,
275
  inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
276
  outputs=[audio_output_chat, ref_text_chat],
277
+ ).then(lambda: None, None, text_input_chat)
 
 
 
 
278
 
 
279
  send_btn_chat.click(
280
  process_audio_input,
281
  inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
 
284
  generate_audio_response,
285
  inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
286
  outputs=[audio_output_chat, ref_text_chat],
287
+ ).then(lambda: None, None, text_input_chat)
 
 
 
 
288
 
289
+ clear_btn_chat.click(clear_conversation, outputs=[chatbot_interface, conversation_state])
290
+ system_prompt_chat.change(update_system_prompt, inputs=system_prompt_chat, outputs=[chatbot_interface, conversation_state])
 
 
 
291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292
 
293
+ app = app_chat
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
294
 
295
 
296
  @click.command()
297
  @click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
298
  @click.option("--host", "-H", default=None, help="Host to run the app on")
299
+ @click.option("--share", "-s", default=False, is_flag=True, help="Share the app via Gradio share link")
 
 
 
 
 
 
300
  @click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
301
+ @click.option("--root_path", "-r", default=None, type=str, help='Root path for the application')
 
 
 
 
 
 
302
  def main(port, host, share, api, root_path):
303
+ app.queue(api_open=api).launch(
304
+ server_name=host,
305
+ server_port=port,
306
+ share=share,
307
+ show_api=api,
308
+ root_path=root_path
309
+ )
310
 
311
 
312
  if __name__ == "__main__":
313
+ main()