Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
# ruff: noqa: E402
|
2 |
-
# Above allows ruff to ignore E402: module level import not at top of file
|
3 |
-
|
4 |
import json
|
5 |
import re
|
6 |
import tempfile
|
7 |
-
from collections import OrderedDict
|
8 |
from importlib.resources import files
|
9 |
|
10 |
import click
|
@@ -51,36 +48,14 @@ DEFAULT_TTS_MODEL_CFG = [
|
|
51 |
]
|
52 |
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
vocoder = load_vocoder()
|
57 |
|
58 |
-
|
59 |
def load_f5tts(ckpt_path=str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))):
|
60 |
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
61 |
return load_model(DiT, F5TTS_model_cfg, ckpt_path)
|
62 |
|
63 |
-
|
64 |
-
def load_e2tts(ckpt_path=str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))):
|
65 |
-
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
66 |
-
return load_model(UNetT, E2TTS_model_cfg, ckpt_path)
|
67 |
-
|
68 |
-
|
69 |
-
def load_custom(ckpt_path: str, vocab_path="", model_cfg=None):
|
70 |
-
ckpt_path, vocab_path = ckpt_path.strip(), vocab_path.strip()
|
71 |
-
if ckpt_path.startswith("hf://"):
|
72 |
-
ckpt_path = str(cached_path(ckpt_path))
|
73 |
-
if vocab_path.startswith("hf://"):
|
74 |
-
vocab_path = str(cached_path(vocab_path))
|
75 |
-
if model_cfg is None:
|
76 |
-
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
77 |
-
return load_model(DiT, model_cfg, ckpt_path, vocab_file=vocab_path)
|
78 |
-
|
79 |
-
|
80 |
F5TTS_ema_model = load_f5tts()
|
81 |
-
E2TTS_ema_model = load_e2tts() if USING_SPACES else None
|
82 |
-
custom_ema_model, pre_custom_path = None, ""
|
83 |
-
|
84 |
chat_model_state = None
|
85 |
chat_tokenizer_state = None
|
86 |
|
@@ -93,7 +68,6 @@ def generate_response(messages, model, tokenizer):
|
|
93 |
tokenize=False,
|
94 |
add_generation_prompt=True,
|
95 |
)
|
96 |
-
|
97 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
98 |
generated_ids = model.generate(
|
99 |
**model_inputs,
|
@@ -101,7 +75,6 @@ def generate_response(messages, model, tokenizer):
|
|
101 |
temperature=0.7,
|
102 |
top_p=0.95,
|
103 |
)
|
104 |
-
|
105 |
generated_ids = [
|
106 |
output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
107 |
]
|
@@ -129,23 +102,7 @@ def infer(
|
|
129 |
return gr.update(), gr.update(), ref_text
|
130 |
|
131 |
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
|
132 |
-
|
133 |
-
if model == "F5-TTS":
|
134 |
-
ema_model = F5TTS_ema_model
|
135 |
-
elif model == "E2-TTS":
|
136 |
-
global E2TTS_ema_model
|
137 |
-
if E2TTS_ema_model is None:
|
138 |
-
show_info("Loading E2-TTS model...")
|
139 |
-
E2TTS_ema_model = load_e2tts()
|
140 |
-
ema_model = E2TTS_ema_model
|
141 |
-
elif isinstance(model, list) and model[0] == "Custom":
|
142 |
-
assert not USING_SPACES, "Only official checkpoints allowed in Spaces."
|
143 |
-
global custom_ema_model, pre_custom_path
|
144 |
-
if pre_custom_path != model[1]:
|
145 |
-
show_info("Loading Custom TTS model...")
|
146 |
-
custom_ema_model = load_custom(model[1], vocab_path=model[2], model_cfg=model[3])
|
147 |
-
pre_custom_path = model[1]
|
148 |
-
ema_model = custom_ema_model
|
149 |
|
150 |
final_wave, final_sample_rate, combined_spectrogram = infer_process(
|
151 |
ref_audio,
|
@@ -160,7 +117,6 @@ def infer(
|
|
160 |
progress=gr.Progress(),
|
161 |
)
|
162 |
|
163 |
-
# Remove silence
|
164 |
if remove_silence:
|
165 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
166 |
sf.write(f.name, final_wave, final_sample_rate)
|
@@ -168,7 +124,6 @@ def infer(
|
|
168 |
final_wave, _ = torchaudio.load(f.name)
|
169 |
final_wave = final_wave.squeeze().cpu().numpy()
|
170 |
|
171 |
-
# Save the spectrogram
|
172 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
173 |
spectrogram_path = tmp_spectrogram.name
|
174 |
save_spectrogram(combined_spectrogram, spectrogram_path)
|
@@ -176,407 +131,39 @@ def infer(
|
|
176 |
return (final_sample_rate, final_wave), spectrogram_path, ref_text
|
177 |
|
178 |
|
179 |
-
with gr.Blocks() as app_credits:
|
180 |
-
gr.Markdown("""
|
181 |
-
# Credits
|
182 |
-
|
183 |
-
* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
|
184 |
-
* [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration
|
185 |
-
* [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat
|
186 |
-
""")
|
187 |
-
with gr.Blocks() as app_tts:
|
188 |
-
gr.Markdown("# Batched TTS")
|
189 |
-
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
|
190 |
-
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
|
191 |
-
generate_btn = gr.Button("Synthesize", variant="primary")
|
192 |
-
with gr.Accordion("Advanced Settings", open=False):
|
193 |
-
ref_text_input = gr.Textbox(
|
194 |
-
label="Reference Text",
|
195 |
-
info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
|
196 |
-
lines=2,
|
197 |
-
)
|
198 |
-
remove_silence = gr.Checkbox(
|
199 |
-
label="Remove Silences",
|
200 |
-
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
|
201 |
-
value=False,
|
202 |
-
)
|
203 |
-
speed_slider = gr.Slider(
|
204 |
-
label="Speed",
|
205 |
-
minimum=0.3,
|
206 |
-
maximum=2.0,
|
207 |
-
value=1.0,
|
208 |
-
step=0.1,
|
209 |
-
info="Adjust the speed of the audio.",
|
210 |
-
)
|
211 |
-
nfe_slider = gr.Slider(
|
212 |
-
label="NFE Steps",
|
213 |
-
minimum=4,
|
214 |
-
maximum=64,
|
215 |
-
value=32,
|
216 |
-
step=2,
|
217 |
-
info="Set the number of denoising steps.",
|
218 |
-
)
|
219 |
-
cross_fade_duration_slider = gr.Slider(
|
220 |
-
label="Cross-Fade Duration (s)",
|
221 |
-
minimum=0.0,
|
222 |
-
maximum=1.0,
|
223 |
-
value=0.15,
|
224 |
-
step=0.01,
|
225 |
-
info="Set the duration of the cross-fade between audio clips.",
|
226 |
-
)
|
227 |
-
|
228 |
-
audio_output = gr.Audio(label="Synthesized Audio")
|
229 |
-
spectrogram_output = gr.Image(label="Spectrogram")
|
230 |
-
|
231 |
-
@gpu_decorator
|
232 |
-
def basic_tts(
|
233 |
-
ref_audio_input,
|
234 |
-
ref_text_input,
|
235 |
-
gen_text_input,
|
236 |
-
remove_silence,
|
237 |
-
cross_fade_duration_slider,
|
238 |
-
nfe_slider,
|
239 |
-
speed_slider,
|
240 |
-
):
|
241 |
-
audio_out, spectrogram_path, ref_text_out = infer(
|
242 |
-
ref_audio_input,
|
243 |
-
ref_text_input,
|
244 |
-
gen_text_input,
|
245 |
-
tts_model_choice,
|
246 |
-
remove_silence,
|
247 |
-
cross_fade_duration=cross_fade_duration_slider,
|
248 |
-
nfe_step=nfe_slider,
|
249 |
-
speed=speed_slider,
|
250 |
-
)
|
251 |
-
return audio_out, spectrogram_path, ref_text_out
|
252 |
-
|
253 |
-
generate_btn.click(
|
254 |
-
basic_tts,
|
255 |
-
inputs=[
|
256 |
-
ref_audio_input,
|
257 |
-
ref_text_input,
|
258 |
-
gen_text_input,
|
259 |
-
remove_silence,
|
260 |
-
cross_fade_duration_slider,
|
261 |
-
nfe_slider,
|
262 |
-
speed_slider,
|
263 |
-
],
|
264 |
-
outputs=[audio_output, spectrogram_output, ref_text_input],
|
265 |
-
)
|
266 |
-
|
267 |
-
|
268 |
-
def parse_speechtypes_text(gen_text):
|
269 |
-
# Pattern to find {speechtype}
|
270 |
-
pattern = r"\{(.*?)\}"
|
271 |
-
|
272 |
-
# Split the text by the pattern
|
273 |
-
tokens = re.split(pattern, gen_text)
|
274 |
-
|
275 |
-
segments = []
|
276 |
-
|
277 |
-
current_style = "Regular"
|
278 |
-
|
279 |
-
for i in range(len(tokens)):
|
280 |
-
if i % 2 == 0:
|
281 |
-
# This is text
|
282 |
-
text = tokens[i].strip()
|
283 |
-
if text:
|
284 |
-
segments.append({"style": current_style, "text": text})
|
285 |
-
else:
|
286 |
-
# This is style
|
287 |
-
style = tokens[i].strip()
|
288 |
-
current_style = style
|
289 |
-
|
290 |
-
return segments
|
291 |
-
|
292 |
-
|
293 |
-
with gr.Blocks() as app_multistyle:
|
294 |
-
# New section for multistyle generation
|
295 |
-
gr.Markdown(
|
296 |
-
"""
|
297 |
-
# Multiple Speech-Type Generation
|
298 |
-
|
299 |
-
This section allows you to generate multiple speech types or multiple people's voices. Enter your text in the format shown below, and the system will generate speech using the appropriate type. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.
|
300 |
-
"""
|
301 |
-
)
|
302 |
-
|
303 |
-
with gr.Row():
|
304 |
-
gr.Markdown(
|
305 |
-
"""
|
306 |
-
**Example Input:**
|
307 |
-
{Regular} Hello, I'd like to order a sandwich please.
|
308 |
-
{Surprised} What do you mean you're out of bread?
|
309 |
-
{Sad} I really wanted a sandwich though...
|
310 |
-
{Angry} You know what, darn you and your little shop!
|
311 |
-
{Whisper} I'll just go back home and cry now.
|
312 |
-
{Shouting} Why me?!
|
313 |
-
"""
|
314 |
-
)
|
315 |
-
|
316 |
-
gr.Markdown(
|
317 |
-
"""
|
318 |
-
**Example Input 2:**
|
319 |
-
{Speaker1_Happy} Hello, I'd like to order a sandwich please.
|
320 |
-
{Speaker2_Regular} Sorry, we're out of bread.
|
321 |
-
{Speaker1_Sad} I really wanted a sandwich though...
|
322 |
-
{Speaker2_Whisper} I'll give you the last one I was hiding.
|
323 |
-
"""
|
324 |
-
)
|
325 |
-
|
326 |
-
gr.Markdown(
|
327 |
-
"Upload different audio clips for each speech type. The first speech type is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button."
|
328 |
-
)
|
329 |
-
|
330 |
-
# Regular speech type (mandatory)
|
331 |
-
with gr.Row() as regular_row:
|
332 |
-
with gr.Column():
|
333 |
-
regular_name = gr.Textbox(value="Regular", label="Speech Type Name")
|
334 |
-
regular_insert = gr.Button("Insert Label", variant="secondary")
|
335 |
-
regular_audio = gr.Audio(label="Regular Reference Audio", type="filepath")
|
336 |
-
regular_ref_text = gr.Textbox(label="Reference Text (Regular)", lines=2)
|
337 |
-
|
338 |
-
# Regular speech type (max 100)
|
339 |
-
max_speech_types = 100
|
340 |
-
speech_type_rows = [regular_row]
|
341 |
-
speech_type_names = [regular_name]
|
342 |
-
speech_type_audios = [regular_audio]
|
343 |
-
speech_type_ref_texts = [regular_ref_text]
|
344 |
-
speech_type_delete_btns = [None]
|
345 |
-
speech_type_insert_btns = [regular_insert]
|
346 |
-
|
347 |
-
# Additional speech types (99 more)
|
348 |
-
for i in range(max_speech_types - 1):
|
349 |
-
with gr.Row(visible=False) as row:
|
350 |
-
with gr.Column():
|
351 |
-
name_input = gr.Textbox(label="Speech Type Name")
|
352 |
-
delete_btn = gr.Button("Delete Type", variant="secondary")
|
353 |
-
insert_btn = gr.Button("Insert Label", variant="secondary")
|
354 |
-
audio_input = gr.Audio(label="Reference Audio", type="filepath")
|
355 |
-
ref_text_input = gr.Textbox(label="Reference Text", lines=2)
|
356 |
-
speech_type_rows.append(row)
|
357 |
-
speech_type_names.append(name_input)
|
358 |
-
speech_type_audios.append(audio_input)
|
359 |
-
speech_type_ref_texts.append(ref_text_input)
|
360 |
-
speech_type_delete_btns.append(delete_btn)
|
361 |
-
speech_type_insert_btns.append(insert_btn)
|
362 |
-
|
363 |
-
# Button to add speech type
|
364 |
-
add_speech_type_btn = gr.Button("Add Speech Type")
|
365 |
-
|
366 |
-
# Keep track of autoincrement of speech types, no roll back
|
367 |
-
speech_type_count = 1
|
368 |
-
|
369 |
-
# Function to add a speech type
|
370 |
-
def add_speech_type_fn():
|
371 |
-
row_updates = [gr.update() for _ in range(max_speech_types)]
|
372 |
-
global speech_type_count
|
373 |
-
if speech_type_count < max_speech_types:
|
374 |
-
row_updates[speech_type_count] = gr.update(visible=True)
|
375 |
-
speech_type_count += 1
|
376 |
-
else:
|
377 |
-
gr.Warning("Exhausted maximum number of speech types. Consider restart the app.")
|
378 |
-
return row_updates
|
379 |
-
|
380 |
-
add_speech_type_btn.click(add_speech_type_fn, outputs=speech_type_rows)
|
381 |
-
|
382 |
-
# Function to delete a speech type
|
383 |
-
def delete_speech_type_fn():
|
384 |
-
return gr.update(visible=False), None, None, None
|
385 |
-
|
386 |
-
# Update delete button clicks
|
387 |
-
for i in range(1, len(speech_type_delete_btns)):
|
388 |
-
speech_type_delete_btns[i].click(
|
389 |
-
delete_speech_type_fn,
|
390 |
-
outputs=[speech_type_rows[i], speech_type_names[i], speech_type_audios[i], speech_type_ref_texts[i]],
|
391 |
-
)
|
392 |
-
|
393 |
-
# Text input for the prompt
|
394 |
-
gen_text_input_multistyle = gr.Textbox(
|
395 |
-
label="Text to Generate",
|
396 |
-
lines=10,
|
397 |
-
placeholder="Enter the script with speaker names (or emotion types) at the start of each block, e.g.:\n\n{Regular} Hello, I'd like to order a sandwich please.\n{Surprised} What do you mean you're out of bread?\n{Sad} I really wanted a sandwich though...\n{Angry} You know what, darn you and your little shop!\n{Whisper} I'll just go back home and cry now.\n{Shouting} Why me?!",
|
398 |
-
)
|
399 |
-
|
400 |
-
def make_insert_speech_type_fn(index):
|
401 |
-
def insert_speech_type_fn(current_text, speech_type_name):
|
402 |
-
current_text = current_text or ""
|
403 |
-
speech_type_name = speech_type_name or "None"
|
404 |
-
updated_text = current_text + f"{{{speech_type_name}}} "
|
405 |
-
return updated_text
|
406 |
-
|
407 |
-
return insert_speech_type_fn
|
408 |
-
|
409 |
-
for i, insert_btn in enumerate(speech_type_insert_btns):
|
410 |
-
insert_fn = make_insert_speech_type_fn(i)
|
411 |
-
insert_btn.click(
|
412 |
-
insert_fn,
|
413 |
-
inputs=[gen_text_input_multistyle, speech_type_names[i]],
|
414 |
-
outputs=gen_text_input_multistyle,
|
415 |
-
)
|
416 |
-
|
417 |
-
with gr.Accordion("Advanced Settings", open=False):
|
418 |
-
remove_silence_multistyle = gr.Checkbox(
|
419 |
-
label="Remove Silences",
|
420 |
-
value=True,
|
421 |
-
)
|
422 |
-
|
423 |
-
# Generate button
|
424 |
-
generate_multistyle_btn = gr.Button("Generate Multi-Style Speech", variant="primary")
|
425 |
-
|
426 |
-
# Output audio
|
427 |
-
audio_output_multistyle = gr.Audio(label="Synthesized Audio")
|
428 |
-
|
429 |
-
@gpu_decorator
|
430 |
-
def generate_multistyle_speech(
|
431 |
-
gen_text,
|
432 |
-
*args,
|
433 |
-
):
|
434 |
-
speech_type_names_list = args[:max_speech_types]
|
435 |
-
speech_type_audios_list = args[max_speech_types : 2 * max_speech_types]
|
436 |
-
speech_type_ref_texts_list = args[2 * max_speech_types : 3 * max_speech_types]
|
437 |
-
remove_silence = args[3 * max_speech_types]
|
438 |
-
# Collect the speech types and their audios into a dict
|
439 |
-
speech_types = OrderedDict()
|
440 |
-
|
441 |
-
ref_text_idx = 0
|
442 |
-
for name_input, audio_input, ref_text_input in zip(
|
443 |
-
speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list
|
444 |
-
):
|
445 |
-
if name_input and audio_input:
|
446 |
-
speech_types[name_input] = {"audio": audio_input, "ref_text": ref_text_input}
|
447 |
-
else:
|
448 |
-
speech_types[f"@{ref_text_idx}@"] = {"audio": "", "ref_text": ""}
|
449 |
-
ref_text_idx += 1
|
450 |
-
|
451 |
-
# Parse the gen_text into segments
|
452 |
-
segments = parse_speechtypes_text(gen_text)
|
453 |
-
|
454 |
-
# For each segment, generate speech
|
455 |
-
generated_audio_segments = []
|
456 |
-
current_style = "Regular"
|
457 |
-
|
458 |
-
for segment in segments:
|
459 |
-
style = segment["style"]
|
460 |
-
text = segment["text"]
|
461 |
-
|
462 |
-
if style in speech_types:
|
463 |
-
current_style = style
|
464 |
-
else:
|
465 |
-
gr.Warning(f"Type {style} is not available, will use Regular as default.")
|
466 |
-
current_style = "Regular"
|
467 |
-
|
468 |
-
try:
|
469 |
-
ref_audio = speech_types[current_style]["audio"]
|
470 |
-
except KeyError:
|
471 |
-
gr.Warning(f"Please provide reference audio for type {current_style}.")
|
472 |
-
return [None] + [speech_types[style]["ref_text"] for style in speech_types]
|
473 |
-
ref_text = speech_types[current_style].get("ref_text", "")
|
474 |
-
|
475 |
-
# Generate speech for this segment
|
476 |
-
audio_out, _, ref_text_out = infer(
|
477 |
-
ref_audio, ref_text, text, tts_model_choice, remove_silence, 0, show_info=print
|
478 |
-
) # show_info=print no pull to top when generating
|
479 |
-
sr, audio_data = audio_out
|
480 |
-
|
481 |
-
generated_audio_segments.append(audio_data)
|
482 |
-
speech_types[current_style]["ref_text"] = ref_text_out
|
483 |
-
|
484 |
-
# Concatenate all audio segments
|
485 |
-
if generated_audio_segments:
|
486 |
-
final_audio_data = np.concatenate(generated_audio_segments)
|
487 |
-
return [(sr, final_audio_data)] + [speech_types[style]["ref_text"] for style in speech_types]
|
488 |
-
else:
|
489 |
-
gr.Warning("No audio generated.")
|
490 |
-
return [None] + [speech_types[style]["ref_text"] for style in speech_types]
|
491 |
-
|
492 |
-
generate_multistyle_btn.click(
|
493 |
-
generate_multistyle_speech,
|
494 |
-
inputs=[
|
495 |
-
gen_text_input_multistyle,
|
496 |
-
]
|
497 |
-
+ speech_type_names
|
498 |
-
+ speech_type_audios
|
499 |
-
+ speech_type_ref_texts
|
500 |
-
+ [
|
501 |
-
remove_silence_multistyle,
|
502 |
-
],
|
503 |
-
outputs=[audio_output_multistyle] + speech_type_ref_texts,
|
504 |
-
)
|
505 |
-
|
506 |
-
# Validation function to disable Generate button if speech types are missing
|
507 |
-
def validate_speech_types(gen_text, regular_name, *args):
|
508 |
-
speech_type_names_list = args
|
509 |
-
|
510 |
-
# Collect the speech types names
|
511 |
-
speech_types_available = set()
|
512 |
-
if regular_name:
|
513 |
-
speech_types_available.add(regular_name)
|
514 |
-
for name_input in speech_type_names_list:
|
515 |
-
if name_input:
|
516 |
-
speech_types_available.add(name_input)
|
517 |
-
|
518 |
-
# Parse the gen_text to get the speech types used
|
519 |
-
segments = parse_speechtypes_text(gen_text)
|
520 |
-
speech_types_in_text = set(segment["style"] for segment in segments)
|
521 |
-
|
522 |
-
# Check if all speech types in text are available
|
523 |
-
missing_speech_types = speech_types_in_text - speech_types_available
|
524 |
-
|
525 |
-
if missing_speech_types:
|
526 |
-
# Disable the generate button
|
527 |
-
return gr.update(interactive=False)
|
528 |
-
else:
|
529 |
-
# Enable the generate button
|
530 |
-
return gr.update(interactive=True)
|
531 |
-
|
532 |
-
gen_text_input_multistyle.change(
|
533 |
-
validate_speech_types,
|
534 |
-
inputs=[gen_text_input_multistyle, regular_name] + speech_type_names,
|
535 |
-
outputs=generate_multistyle_btn,
|
536 |
-
)
|
537 |
-
|
538 |
-
|
539 |
with gr.Blocks() as app_chat:
|
540 |
-
gr.Markdown(
|
541 |
-
"""
|
542 |
# Voice Chat
|
543 |
Have a conversation with an AI using your reference voice!
|
544 |
1. Upload a reference audio clip and optionally its transcript.
|
545 |
2. Load the chat model.
|
546 |
3. Record your message through your microphone.
|
547 |
4. The AI will respond using the reference voice.
|
548 |
-
"""
|
549 |
-
)
|
550 |
|
551 |
if not USING_SPACES:
|
552 |
load_chat_model_btn = gr.Button("Load Chat Model", variant="primary")
|
553 |
-
|
554 |
chat_interface_container = gr.Column(visible=False)
|
555 |
|
556 |
@gpu_decorator
|
557 |
def load_chat_model():
|
558 |
global chat_model_state, chat_tokenizer_state
|
559 |
if chat_model_state is None:
|
560 |
-
|
561 |
-
show_info("Loading chat model...")
|
562 |
model_name = "Qwen/Qwen2.5-3B-Instruct"
|
563 |
chat_model_state = AutoModelForCausalLM.from_pretrained(
|
564 |
model_name, torch_dtype="auto", device_map="auto"
|
565 |
)
|
566 |
chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
|
567 |
-
|
568 |
-
|
569 |
return gr.update(visible=False), gr.update(visible=True)
|
570 |
|
571 |
load_chat_model_btn.click(load_chat_model, outputs=[load_chat_model_btn, chat_interface_container])
|
572 |
-
|
573 |
else:
|
574 |
chat_interface_container = gr.Column()
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
chat_model_state = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
579 |
-
chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
|
580 |
|
581 |
with chat_interface_container:
|
582 |
with gr.Row():
|
@@ -600,7 +187,6 @@ Have a conversation with an AI using your reference voice!
|
|
600 |
)
|
601 |
|
602 |
chatbot_interface = gr.Chatbot(label="Conversation")
|
603 |
-
|
604 |
with gr.Row():
|
605 |
with gr.Column():
|
606 |
audio_input_chat = gr.Microphone(
|
@@ -625,11 +211,8 @@ Have a conversation with an AI using your reference voice!
|
|
625 |
]
|
626 |
)
|
627 |
|
628 |
-
# Modify process_audio_input to use model and tokenizer from state
|
629 |
@gpu_decorator
|
630 |
def process_audio_input(audio_path, text, history, conv_state):
|
631 |
-
"""Handle audio or text input from user"""
|
632 |
-
|
633 |
if not audio_path and not text.strip():
|
634 |
return history, conv_state, ""
|
635 |
|
@@ -641,17 +224,13 @@ Have a conversation with an AI using your reference voice!
|
|
641 |
|
642 |
conv_state.append({"role": "user", "content": text})
|
643 |
history.append((text, None))
|
644 |
-
|
645 |
response = generate_response(conv_state, chat_model_state, chat_tokenizer_state)
|
646 |
-
|
647 |
conv_state.append({"role": "assistant", "content": response})
|
648 |
history[-1] = (text, response)
|
649 |
-
|
650 |
return history, conv_state, ""
|
651 |
|
652 |
@gpu_decorator
|
653 |
def generate_audio_response(history, ref_audio, ref_text, remove_silence):
|
654 |
-
"""Generate TTS audio for AI response"""
|
655 |
if not history or not ref_audio:
|
656 |
return None
|
657 |
|
@@ -667,25 +246,16 @@ Have a conversation with an AI using your reference voice!
|
|
667 |
remove_silence,
|
668 |
cross_fade_duration=0.15,
|
669 |
speed=1.0,
|
670 |
-
show_info=print,
|
671 |
)
|
672 |
return audio_result, ref_text_out
|
673 |
|
674 |
def clear_conversation():
|
675 |
-
"""
|
676 |
-
return [], [
|
677 |
-
{
|
678 |
-
"role": "system",
|
679 |
-
"content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
|
680 |
-
}
|
681 |
-
]
|
682 |
|
683 |
def update_system_prompt(new_prompt):
|
684 |
-
"""
|
685 |
-
new_conv_state = [{"role": "system", "content": new_prompt}]
|
686 |
-
return [], new_conv_state
|
687 |
|
688 |
-
# Handle audio input
|
689 |
audio_input_chat.stop_recording(
|
690 |
process_audio_input,
|
691 |
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
|
@@ -694,13 +264,8 @@ Have a conversation with an AI using your reference voice!
|
|
694 |
generate_audio_response,
|
695 |
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
|
696 |
outputs=[audio_output_chat, ref_text_chat],
|
697 |
-
).then(
|
698 |
-
lambda: None,
|
699 |
-
None,
|
700 |
-
audio_input_chat,
|
701 |
-
)
|
702 |
|
703 |
-
# Handle text input
|
704 |
text_input_chat.submit(
|
705 |
process_audio_input,
|
706 |
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
|
@@ -709,13 +274,8 @@ Have a conversation with an AI using your reference voice!
|
|
709 |
generate_audio_response,
|
710 |
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
|
711 |
outputs=[audio_output_chat, ref_text_chat],
|
712 |
-
).then(
|
713 |
-
lambda: None,
|
714 |
-
None,
|
715 |
-
text_input_chat,
|
716 |
-
)
|
717 |
|
718 |
-
# Handle send button
|
719 |
send_btn_chat.click(
|
720 |
process_audio_input,
|
721 |
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
|
@@ -724,165 +284,30 @@ Have a conversation with an AI using your reference voice!
|
|
724 |
generate_audio_response,
|
725 |
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
|
726 |
outputs=[audio_output_chat, ref_text_chat],
|
727 |
-
).then(
|
728 |
-
lambda: None,
|
729 |
-
None,
|
730 |
-
text_input_chat,
|
731 |
-
)
|
732 |
|
733 |
-
|
734 |
-
|
735 |
-
clear_conversation,
|
736 |
-
outputs=[chatbot_interface, conversation_state],
|
737 |
-
)
|
738 |
|
739 |
-
# Handle system prompt change and reset conversation
|
740 |
-
system_prompt_chat.change(
|
741 |
-
update_system_prompt,
|
742 |
-
inputs=system_prompt_chat,
|
743 |
-
outputs=[chatbot_interface, conversation_state],
|
744 |
-
)
|
745 |
-
|
746 |
-
|
747 |
-
with gr.Blocks() as app:
|
748 |
-
gr.Markdown(
|
749 |
-
f"""
|
750 |
-
# E2/F5 TTS
|
751 |
-
|
752 |
-
This is {"a local web UI for [F5 TTS](https://github.com/SWivid/F5-TTS)" if not USING_SPACES else "an online demo for [F5-TTS](https://github.com/SWivid/F5-TTS)"} with advanced batch processing support. This app supports the following TTS models:
|
753 |
-
|
754 |
-
* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
|
755 |
-
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
|
756 |
-
|
757 |
-
The checkpoints currently support English and Chinese.
|
758 |
-
|
759 |
-
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s with ✂ in the bottom right corner (otherwise might have non-optimal auto-trimmed result).
|
760 |
|
761 |
-
|
762 |
-
"""
|
763 |
-
)
|
764 |
-
|
765 |
-
last_used_custom = files("f5_tts").joinpath("infer/.cache/last_used_custom_model_info.txt")
|
766 |
-
|
767 |
-
def load_last_used_custom():
|
768 |
-
try:
|
769 |
-
custom = []
|
770 |
-
with open(last_used_custom, "r", encoding="utf-8") as f:
|
771 |
-
for line in f:
|
772 |
-
custom.append(line.strip())
|
773 |
-
return custom
|
774 |
-
except FileNotFoundError:
|
775 |
-
last_used_custom.parent.mkdir(parents=True, exist_ok=True)
|
776 |
-
return DEFAULT_TTS_MODEL_CFG
|
777 |
-
|
778 |
-
def switch_tts_model(new_choice):
|
779 |
-
global tts_model_choice
|
780 |
-
if new_choice == "Custom": # override in case webpage is refreshed
|
781 |
-
custom_ckpt_path, custom_vocab_path, custom_model_cfg = load_last_used_custom()
|
782 |
-
tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path, json.loads(custom_model_cfg)]
|
783 |
-
return (
|
784 |
-
gr.update(visible=True, value=custom_ckpt_path),
|
785 |
-
gr.update(visible=True, value=custom_vocab_path),
|
786 |
-
gr.update(visible=True, value=custom_model_cfg),
|
787 |
-
)
|
788 |
-
else:
|
789 |
-
tts_model_choice = new_choice
|
790 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
791 |
-
|
792 |
-
def set_custom_model(custom_ckpt_path, custom_vocab_path, custom_model_cfg):
|
793 |
-
global tts_model_choice
|
794 |
-
tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path, json.loads(custom_model_cfg)]
|
795 |
-
with open(last_used_custom, "w", encoding="utf-8") as f:
|
796 |
-
f.write(custom_ckpt_path + "\n" + custom_vocab_path + "\n" + custom_model_cfg + "\n")
|
797 |
-
|
798 |
-
with gr.Row():
|
799 |
-
if not USING_SPACES:
|
800 |
-
choose_tts_model = gr.Radio(
|
801 |
-
choices=[DEFAULT_TTS_MODEL, "E2-TTS", "Custom"], label="Choose TTS Model", value=DEFAULT_TTS_MODEL
|
802 |
-
)
|
803 |
-
else:
|
804 |
-
choose_tts_model = gr.Radio(
|
805 |
-
choices=[DEFAULT_TTS_MODEL, "E2-TTS"], label="Choose TTS Model", value=DEFAULT_TTS_MODEL
|
806 |
-
)
|
807 |
-
custom_ckpt_path = gr.Dropdown(
|
808 |
-
choices=[DEFAULT_TTS_MODEL_CFG[0]],
|
809 |
-
value=load_last_used_custom()[0],
|
810 |
-
allow_custom_value=True,
|
811 |
-
label="Model: local_path | hf://user_id/repo_id/model_ckpt",
|
812 |
-
visible=False,
|
813 |
-
)
|
814 |
-
custom_vocab_path = gr.Dropdown(
|
815 |
-
choices=[DEFAULT_TTS_MODEL_CFG[1]],
|
816 |
-
value=load_last_used_custom()[1],
|
817 |
-
allow_custom_value=True,
|
818 |
-
label="Vocab: local_path | hf://user_id/repo_id/vocab_file",
|
819 |
-
visible=False,
|
820 |
-
)
|
821 |
-
custom_model_cfg = gr.Dropdown(
|
822 |
-
choices=[
|
823 |
-
DEFAULT_TTS_MODEL_CFG[2],
|
824 |
-
json.dumps(dict(dim=768, depth=18, heads=12, ff_mult=2, text_dim=512, conv_layers=4)),
|
825 |
-
],
|
826 |
-
value=load_last_used_custom()[2],
|
827 |
-
allow_custom_value=True,
|
828 |
-
label="Config: in a dictionary form",
|
829 |
-
visible=False,
|
830 |
-
)
|
831 |
-
|
832 |
-
choose_tts_model.change(
|
833 |
-
switch_tts_model,
|
834 |
-
inputs=[choose_tts_model],
|
835 |
-
outputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
|
836 |
-
show_progress="hidden",
|
837 |
-
)
|
838 |
-
custom_ckpt_path.change(
|
839 |
-
set_custom_model,
|
840 |
-
inputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
|
841 |
-
show_progress="hidden",
|
842 |
-
)
|
843 |
-
custom_vocab_path.change(
|
844 |
-
set_custom_model,
|
845 |
-
inputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
|
846 |
-
show_progress="hidden",
|
847 |
-
)
|
848 |
-
custom_model_cfg.change(
|
849 |
-
set_custom_model,
|
850 |
-
inputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg],
|
851 |
-
show_progress="hidden",
|
852 |
-
)
|
853 |
-
|
854 |
-
gr.TabbedInterface(
|
855 |
-
[app_tts, app_multistyle, app_chat, app_credits],
|
856 |
-
["Basic-TTS", "Multi-Speech", "Voice-Chat", "Credits"],
|
857 |
-
)
|
858 |
|
859 |
|
860 |
@click.command()
|
861 |
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
|
862 |
@click.option("--host", "-H", default=None, help="Host to run the app on")
|
863 |
-
@click.option(
|
864 |
-
"--share",
|
865 |
-
"-s",
|
866 |
-
default=False,
|
867 |
-
is_flag=True,
|
868 |
-
help="Share the app via Gradio share link",
|
869 |
-
)
|
870 |
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
|
871 |
-
@click.option(
|
872 |
-
"--root_path",
|
873 |
-
"-r",
|
874 |
-
default=None,
|
875 |
-
type=str,
|
876 |
-
help='The root path (or "mount point") of the application, if it\'s not served from the root ("/") of the domain. Often used when the application is behind a reverse proxy that forwards requests to the application, e.g. set "/myapp" or full URL for application served at "https://example.com/myapp".',
|
877 |
-
)
|
878 |
def main(port, host, share, api, root_path):
|
879 |
-
|
880 |
-
|
881 |
-
|
|
|
|
|
|
|
|
|
882 |
|
883 |
|
884 |
if __name__ == "__main__":
|
885 |
-
|
886 |
-
main()
|
887 |
-
else:
|
888 |
-
app.queue().launch()
|
|
|
1 |
# ruff: noqa: E402
|
|
|
|
|
2 |
import json
|
3 |
import re
|
4 |
import tempfile
|
|
|
5 |
from importlib.resources import files
|
6 |
|
7 |
import click
|
|
|
48 |
]
|
49 |
|
50 |
|
51 |
+
# Load models
|
|
|
52 |
vocoder = load_vocoder()
|
53 |
|
|
|
54 |
def load_f5tts(ckpt_path=str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))):
|
55 |
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
56 |
return load_model(DiT, F5TTS_model_cfg, ckpt_path)
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
F5TTS_ema_model = load_f5tts()
|
|
|
|
|
|
|
59 |
chat_model_state = None
|
60 |
chat_tokenizer_state = None
|
61 |
|
|
|
68 |
tokenize=False,
|
69 |
add_generation_prompt=True,
|
70 |
)
|
|
|
71 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
72 |
generated_ids = model.generate(
|
73 |
**model_inputs,
|
|
|
75 |
temperature=0.7,
|
76 |
top_p=0.95,
|
77 |
)
|
|
|
78 |
generated_ids = [
|
79 |
output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
80 |
]
|
|
|
102 |
return gr.update(), gr.update(), ref_text
|
103 |
|
104 |
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
|
105 |
+
ema_model = F5TTS_ema_model # Use F5-TTS by default
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
final_wave, final_sample_rate, combined_spectrogram = infer_process(
|
108 |
ref_audio,
|
|
|
117 |
progress=gr.Progress(),
|
118 |
)
|
119 |
|
|
|
120 |
if remove_silence:
|
121 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
122 |
sf.write(f.name, final_wave, final_sample_rate)
|
|
|
124 |
final_wave, _ = torchaudio.load(f.name)
|
125 |
final_wave = final_wave.squeeze().cpu().numpy()
|
126 |
|
|
|
127 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
128 |
spectrogram_path = tmp_spectrogram.name
|
129 |
save_spectrogram(combined_spectrogram, spectrogram_path)
|
|
|
131 |
return (final_sample_rate, final_wave), spectrogram_path, ref_text
|
132 |
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
with gr.Blocks() as app_chat:
|
135 |
+
gr.Markdown("""
|
|
|
136 |
# Voice Chat
|
137 |
Have a conversation with an AI using your reference voice!
|
138 |
1. Upload a reference audio clip and optionally its transcript.
|
139 |
2. Load the chat model.
|
140 |
3. Record your message through your microphone.
|
141 |
4. The AI will respond using the reference voice.
|
142 |
+
""")
|
|
|
143 |
|
144 |
if not USING_SPACES:
|
145 |
load_chat_model_btn = gr.Button("Load Chat Model", variant="primary")
|
|
|
146 |
chat_interface_container = gr.Column(visible=False)
|
147 |
|
148 |
@gpu_decorator
|
149 |
def load_chat_model():
|
150 |
global chat_model_state, chat_tokenizer_state
|
151 |
if chat_model_state is None:
|
152 |
+
gr.Info("Loading chat model...")
|
|
|
153 |
model_name = "Qwen/Qwen2.5-3B-Instruct"
|
154 |
chat_model_state = AutoModelForCausalLM.from_pretrained(
|
155 |
model_name, torch_dtype="auto", device_map="auto"
|
156 |
)
|
157 |
chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
|
158 |
+
gr.Info("Chat model loaded.")
|
|
|
159 |
return gr.update(visible=False), gr.update(visible=True)
|
160 |
|
161 |
load_chat_model_btn.click(load_chat_model, outputs=[load_chat_model_btn, chat_interface_container])
|
|
|
162 |
else:
|
163 |
chat_interface_container = gr.Column()
|
164 |
+
model_name = "Qwen/Qwen2.5-3B-Instruct"
|
165 |
+
chat_model_state = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
166 |
+
chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
167 |
|
168 |
with chat_interface_container:
|
169 |
with gr.Row():
|
|
|
187 |
)
|
188 |
|
189 |
chatbot_interface = gr.Chatbot(label="Conversation")
|
|
|
190 |
with gr.Row():
|
191 |
with gr.Column():
|
192 |
audio_input_chat = gr.Microphone(
|
|
|
211 |
]
|
212 |
)
|
213 |
|
|
|
214 |
@gpu_decorator
|
215 |
def process_audio_input(audio_path, text, history, conv_state):
|
|
|
|
|
216 |
if not audio_path and not text.strip():
|
217 |
return history, conv_state, ""
|
218 |
|
|
|
224 |
|
225 |
conv_state.append({"role": "user", "content": text})
|
226 |
history.append((text, None))
|
|
|
227 |
response = generate_response(conv_state, chat_model_state, chat_tokenizer_state)
|
|
|
228 |
conv_state.append({"role": "assistant", "content": response})
|
229 |
history[-1] = (text, response)
|
|
|
230 |
return history, conv_state, ""
|
231 |
|
232 |
@gpu_decorator
|
233 |
def generate_audio_response(history, ref_audio, ref_text, remove_silence):
|
|
|
234 |
if not history or not ref_audio:
|
235 |
return None
|
236 |
|
|
|
246 |
remove_silence,
|
247 |
cross_fade_duration=0.15,
|
248 |
speed=1.0,
|
249 |
+
show_info=print,
|
250 |
)
|
251 |
return audio_result, ref_text_out
|
252 |
|
253 |
def clear_conversation():
|
254 |
+
return [], [{"role": "system", "content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud."}]
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
def update_system_prompt(new_prompt):
|
257 |
+
return [], [{"role": "system", "content": new_prompt}]
|
|
|
|
|
258 |
|
|
|
259 |
audio_input_chat.stop_recording(
|
260 |
process_audio_input,
|
261 |
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
|
|
|
264 |
generate_audio_response,
|
265 |
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
|
266 |
outputs=[audio_output_chat, ref_text_chat],
|
267 |
+
).then(lambda: None, None, audio_input_chat)
|
|
|
|
|
|
|
|
|
268 |
|
|
|
269 |
text_input_chat.submit(
|
270 |
process_audio_input,
|
271 |
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
|
|
|
274 |
generate_audio_response,
|
275 |
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
|
276 |
outputs=[audio_output_chat, ref_text_chat],
|
277 |
+
).then(lambda: None, None, text_input_chat)
|
|
|
|
|
|
|
|
|
278 |
|
|
|
279 |
send_btn_chat.click(
|
280 |
process_audio_input,
|
281 |
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
|
|
|
284 |
generate_audio_response,
|
285 |
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
|
286 |
outputs=[audio_output_chat, ref_text_chat],
|
287 |
+
).then(lambda: None, None, text_input_chat)
|
|
|
|
|
|
|
|
|
288 |
|
289 |
+
clear_btn_chat.click(clear_conversation, outputs=[chatbot_interface, conversation_state])
|
290 |
+
system_prompt_chat.change(update_system_prompt, inputs=system_prompt_chat, outputs=[chatbot_interface, conversation_state])
|
|
|
|
|
|
|
291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
+
app = app_chat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
|
295 |
|
296 |
@click.command()
|
297 |
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
|
298 |
@click.option("--host", "-H", default=None, help="Host to run the app on")
|
299 |
+
@click.option("--share", "-s", default=False, is_flag=True, help="Share the app via Gradio share link")
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
|
301 |
+
@click.option("--root_path", "-r", default=None, type=str, help='Root path for the application')
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
def main(port, host, share, api, root_path):
|
303 |
+
app.queue(api_open=api).launch(
|
304 |
+
server_name=host,
|
305 |
+
server_port=port,
|
306 |
+
share=share,
|
307 |
+
show_api=api,
|
308 |
+
root_path=root_path
|
309 |
+
)
|
310 |
|
311 |
|
312 |
if __name__ == "__main__":
|
313 |
+
main()
|
|
|
|
|
|