Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,7 +18,7 @@ except ImportError:
|
|
| 18 |
import yt_dlp # Added import for yt-dlp
|
| 19 |
|
| 20 |
MODEL_NAME = "NbAiLab/nb-whisper-large"
|
| 21 |
-
lang = "no"
|
| 22 |
|
| 23 |
max_audio_length= 30 * 60
|
| 24 |
|
|
@@ -28,7 +28,7 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
| 28 |
print(f"Bruker enhet: {device}")
|
| 29 |
|
| 30 |
@spaces.GPU(duration=60 * 2)
|
| 31 |
-
def pipe(file, return_timestamps=False,
|
| 32 |
asr = pipeline(
|
| 33 |
task="automatic-speech-recognition",
|
| 34 |
model=MODEL_NAME,
|
|
@@ -38,12 +38,19 @@ def pipe(file, return_timestamps=False,lang="no"):
|
|
| 38 |
torch_dtype=torch.float16,
|
| 39 |
model_kwargs={"attn_implementation": "flash_attention_2", "num_beams": 5} if FLASH_ATTENTION else {"attn_implementation": "sdpa", "num_beams": 5},
|
| 40 |
)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
def format_output(text):
|
| 49 |
# Add a line break after ".", "!", ":", or "?" unless part of sequences like "..."
|
|
@@ -84,10 +91,10 @@ def transcribe(file, return_timestamps=False,lang_nn=False):
|
|
| 84 |
formatted_text = "<br>".join(text)
|
| 85 |
else:
|
| 86 |
if not return_timestamps:
|
| 87 |
-
text = pipe(file_to_transcribe,
|
| 88 |
formatted_text = format_output(text)
|
| 89 |
else:
|
| 90 |
-
chunks = pipe(file_to_transcribe, return_timestamps=True,
|
| 91 |
text = []
|
| 92 |
for chunk in chunks:
|
| 93 |
start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??"
|
|
|
|
| 18 |
import yt_dlp # Added import for yt-dlp
|
| 19 |
|
| 20 |
MODEL_NAME = "NbAiLab/nb-whisper-large"
|
| 21 |
+
#lang = "no"
|
| 22 |
|
| 23 |
max_audio_length= 30 * 60
|
| 24 |
|
|
|
|
| 28 |
print(f"Bruker enhet: {device}")
|
| 29 |
|
| 30 |
@spaces.GPU(duration=60 * 2)
|
| 31 |
+
def pipe(file, return_timestamps=False,lang_nn=False):
|
| 32 |
asr = pipeline(
|
| 33 |
task="automatic-speech-recognition",
|
| 34 |
model=MODEL_NAME,
|
|
|
|
| 38 |
torch_dtype=torch.float16,
|
| 39 |
model_kwargs={"attn_implementation": "flash_attention_2", "num_beams": 5} if FLASH_ATTENTION else {"attn_implementation": "sdpa", "num_beams": 5},
|
| 40 |
)
|
| 41 |
+
if not lang_nn:
|
| 42 |
+
asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids(
|
| 43 |
+
language="no",
|
| 44 |
+
task="transcribe",
|
| 45 |
+
no_timestamps=not return_timestamps,
|
| 46 |
+
)
|
| 47 |
+
else:
|
| 48 |
+
asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids(
|
| 49 |
+
language="nn",
|
| 50 |
+
task="transcribe",
|
| 51 |
+
no_timestamps=not return_timestamps,
|
| 52 |
+
)
|
| 53 |
+
return asr(file, return_timestamps=return_timestamps, lang_nn=lang_nn, batch_size=24)
|
| 54 |
|
| 55 |
def format_output(text):
|
| 56 |
# Add a line break after ".", "!", ":", or "?" unless part of sequences like "..."
|
|
|
|
| 91 |
formatted_text = "<br>".join(text)
|
| 92 |
else:
|
| 93 |
if not return_timestamps:
|
| 94 |
+
text = pipe(file_to_transcribe,lang_nn=True)["text"]
|
| 95 |
formatted_text = format_output(text)
|
| 96 |
else:
|
| 97 |
+
chunks = pipe(file_to_transcribe, return_timestamps=True,lang_nn=True)["chunks"]
|
| 98 |
text = []
|
| 99 |
for chunk in chunks:
|
| 100 |
start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??"
|