Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -28,7 +28,7 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
28 |
print(f"Bruker enhet: {device}")
|
29 |
|
30 |
@spaces.GPU(duration=60 * 2)
|
31 |
-
def pipe(file, return_timestamps=False,lang):
|
32 |
asr = pipeline(
|
33 |
task="automatic-speech-recognition",
|
34 |
model=MODEL_NAME,
|
@@ -71,10 +71,10 @@ def transcribe(file, return_timestamps=False,lang_nn=False):
|
|
71 |
|
72 |
if not lang_nn:
|
73 |
if not return_timestamps:
|
74 |
-
text = pipe(file_to_transcribe
|
75 |
formatted_text = format_output(text)
|
76 |
else:
|
77 |
-
chunks = pipe(file_to_transcribe, return_timestamps=True
|
78 |
text = []
|
79 |
for chunk in chunks:
|
80 |
start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??"
|
@@ -84,7 +84,7 @@ def transcribe(file, return_timestamps=False,lang_nn=False):
|
|
84 |
formatted_text = "<br>".join(text)
|
85 |
else:
|
86 |
if not return_timestamps:
|
87 |
-
text = pipe(file_to_transcribe,
|
88 |
formatted_text = format_output(text)
|
89 |
else:
|
90 |
chunks = pipe(file_to_transcribe, return_timestamps=True,lang="nn")["chunks"]
|
@@ -95,7 +95,11 @@ def transcribe(file, return_timestamps=False,lang_nn=False):
|
|
95 |
line = f"[{start_time} -> {end_time}] {chunk['text']}"
|
96 |
text.append(line)
|
97 |
formatted_text = "<br>".join(text)
|
98 |
-
|
|
|
|
|
|
|
|
|
99 |
if truncated:
|
100 |
link="https://github.com/NbAiLab/nostram/blob/main/leverandorer.md"
|
101 |
disclaimer = (
|
@@ -109,7 +113,7 @@ def transcribe(file, return_timestamps=False,lang_nn=False):
|
|
109 |
formatted_text += "<br><br><i>Transkribert med NB-Whisper demo</i>"
|
110 |
|
111 |
|
112 |
-
return formatted_text
|
113 |
|
114 |
def _return_yt_html_embed(yt_url):
|
115 |
video_id = yt_url.split("?v=")[-1]
|
@@ -162,7 +166,11 @@ with demo:
|
|
162 |
gr.components.Checkbox(label="Inkluder tidsstempler"),
|
163 |
gr.components.Checkbox(label="Nynorsk"),
|
164 |
],
|
165 |
-
|
|
|
|
|
|
|
|
|
166 |
#outputs="text",
|
167 |
|
168 |
description=(
|
|
|
28 |
print(f"Bruker enhet: {device}")
|
29 |
|
30 |
@spaces.GPU(duration=60 * 2)
|
31 |
+
def pipe(file, return_timestamps=False,lang="no"):
|
32 |
asr = pipeline(
|
33 |
task="automatic-speech-recognition",
|
34 |
model=MODEL_NAME,
|
|
|
71 |
|
72 |
if not lang_nn:
|
73 |
if not return_timestamps:
|
74 |
+
text = pipe(file_to_transcribe)["text"]
|
75 |
formatted_text = format_output(text)
|
76 |
else:
|
77 |
+
chunks = pipe(file_to_transcribe, return_timestamps=True)["chunks"]
|
78 |
text = []
|
79 |
for chunk in chunks:
|
80 |
start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??"
|
|
|
84 |
formatted_text = "<br>".join(text)
|
85 |
else:
|
86 |
if not return_timestamps:
|
87 |
+
text = pipe(file_to_transcribe,lang="nn")["text"]
|
88 |
formatted_text = format_output(text)
|
89 |
else:
|
90 |
chunks = pipe(file_to_transcribe, return_timestamps=True,lang="nn")["chunks"]
|
|
|
95 |
line = f"[{start_time} -> {end_time}] {chunk['text']}"
|
96 |
text.append(line)
|
97 |
formatted_text = "<br>".join(text)
|
98 |
+
|
99 |
+
output_file = "transcription.txt"
|
100 |
+
with open(output_file, "w") as f:
|
101 |
+
f.write(re.sub('<br>', '\n', formatted_text))
|
102 |
+
|
103 |
if truncated:
|
104 |
link="https://github.com/NbAiLab/nostram/blob/main/leverandorer.md"
|
105 |
disclaimer = (
|
|
|
113 |
formatted_text += "<br><br><i>Transkribert med NB-Whisper demo</i>"
|
114 |
|
115 |
|
116 |
+
return formatted_text, output_file
|
117 |
|
118 |
def _return_yt_html_embed(yt_url):
|
119 |
video_id = yt_url.split("?v=")[-1]
|
|
|
166 |
gr.components.Checkbox(label="Inkluder tidsstempler"),
|
167 |
gr.components.Checkbox(label="Nynorsk"),
|
168 |
],
|
169 |
+
|
170 |
+
outputs=[
|
171 |
+
gr.HTML(label="text"),
|
172 |
+
gr.File(label="Last ned transkripsjon")
|
173 |
+
],
|
174 |
#outputs="text",
|
175 |
|
176 |
description=(
|