|
import gradio as gr |
|
import random |
|
import os |
|
|
|
|
|
models = { |
|
"Face Projection": gr.load("models/Purz/face-projection"), |
|
"Flux LoRA Uncensored": gr.load("models/prashanth970/flux-lora-uncensored"), |
|
"NSFW TrioHMH Flux": gr.load("models/DiegoJR1973/NSFW-TrioHMH-Flux"), |
|
"NSFW Master": gr.load("models/pimpilikipilapi1/NSFW_master") |
|
} |
|
|
|
def generate_image(text, seed, width, height, guidance_scale, num_inference_steps): |
|
if seed is not None: |
|
random.seed(seed) |
|
|
|
result_images = {} |
|
for model_name, model in models.items(): |
|
result_images[model_name] = model(text) |
|
|
|
print(f"Width: {width}, Height: {height}, Guidance Scale: {guidance_scale}, Inference Steps: {num_inference_steps}") |
|
|
|
return [result_images[model_name] for model_name in models] |
|
|
|
def randomize_parameters(): |
|
seed = random.randint(0, 999999) |
|
width = random.randint(512, 2048) |
|
height = random.randint(512, 2048) |
|
guidance_scale = round(random.uniform(0.1, 20.0), 1) |
|
num_inference_steps = random.randint(1, 40) |
|
|
|
return seed, width, height, guidance_scale, num_inference_steps |
|
|
|
interface = gr.Interface( |
|
fn=generate_image, |
|
inputs=[ |
|
gr.Textbox(label="Type here your imagination:", placeholder="Type or click an example..."), |
|
gr.Slider(label="Seed", minimum=0, maximum=999999, step=1), |
|
gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1024), |
|
gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1024), |
|
gr.Slider(label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=3.0), |
|
gr.Slider(label="Number of inference steps", minimum=1, maximum=40, step=1, value=28), |
|
], |
|
outputs=[gr.Image(label=model_name) for model_name in models], |
|
theme="NoCrypt/miku", |
|
description="Sorry for the inconvenience. The model is currently running on the CPU, which might affect performance. We appreciate your understanding.", |
|
) |
|
|
|
interface.launch() |
|
|