import gradio as gr import random import os # Load all models models = { "Face Projection": gr.load("models/Purz/face-projection"), "Flux LoRA Uncensored": gr.load("models/prashanth970/flux-lora-uncensored"), "NSFW TrioHMH Flux": gr.load("models/DiegoJR1973/NSFW-TrioHMH-Flux"), "NSFW Master": gr.load("models/pimpilikipilapi1/NSFW_master") } def generate_image(text, seed, width, height, guidance_scale, num_inference_steps): if seed is not None: random.seed(seed) result_images = {} for model_name, model in models.items(): result_images[model_name] = model(text) print(f"Width: {width}, Height: {height}, Guidance Scale: {guidance_scale}, Inference Steps: {num_inference_steps}") return [result_images[model_name] for model_name in models] def randomize_parameters(): seed = random.randint(0, 999999) width = random.randint(512, 2048) height = random.randint(512, 2048) guidance_scale = round(random.uniform(0.1, 20.0), 1) num_inference_steps = random.randint(1, 40) return seed, width, height, guidance_scale, num_inference_steps interface = gr.Interface( fn=generate_image, inputs=[ gr.Textbox(label="Type here your imagination:", placeholder="Type or click an example..."), gr.Slider(label="Seed", minimum=0, maximum=999999, step=1), gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1024), gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1024), gr.Slider(label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=3.0), gr.Slider(label="Number of inference steps", minimum=1, maximum=40, step=1, value=28), ], outputs=[gr.Image(label=model_name) for model_name in models], theme="NoCrypt/miku", description="Sorry for the inconvenience. The model is currently running on the CPU, which might affect performance. We appreciate your understanding.", ) interface.launch()