Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import AutoTokenizer, PaliGemmaForConditionalGeneration, PaliGemmaProcessor
|
| 5 |
+
import torch
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
# Load PaliGemma
|
| 9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
+
model_id = "google/paligemma-3b-mix-224"
|
| 11 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device)
|
| 12 |
+
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
| 13 |
+
|
| 14 |
+
# Function to draw bounding boxes (your original code)
|
| 15 |
+
def draw_bounding_box(draw, coordinates, label, width, height):
|
| 16 |
+
y1, x1, y2, x2 = coordinates
|
| 17 |
+
y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
|
| 18 |
+
|
| 19 |
+
text_width, text_height = draw.textsize(label)
|
| 20 |
+
draw.rectangle([(x1, y1 - text_height - 2), (x1 + text_width + 4, y1)], fill="red")
|
| 21 |
+
|
| 22 |
+
# Draw label text
|
| 23 |
+
draw.text((x1 + 2, y1 - text_height - 2), label, fill="white")
|
| 24 |
+
|
| 25 |
+
# Draw bounding box
|
| 26 |
+
draw.rectangle([(x1, y1), (x2, y2)], outline="red", width=2)
|
| 27 |
+
|
| 28 |
+
def process_video(video_path, input_text):
|
| 29 |
+
cap = cv2.VideoCapture(video_path)
|
| 30 |
+
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
| 31 |
+
out = cv2.VideoWriter('output_paligemma_keras.avi', fourcc, 20.0, (int(cap.get(3)), int(cap.get(4))))
|
| 32 |
+
|
| 33 |
+
while(True):
|
| 34 |
+
ret, frame = cap.read()
|
| 35 |
+
if not ret:
|
| 36 |
+
break
|
| 37 |
+
|
| 38 |
+
# Convert the frame to a PIL Image
|
| 39 |
+
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 40 |
+
|
| 41 |
+
# Send text prompt and image as input.
|
| 42 |
+
inputs = processor(text=input_text, images=img,
|
| 43 |
+
padding="longest", do_convert_rgb=True, return_tensors="pt").to("cuda")
|
| 44 |
+
inputs = inputs.to(dtype=model.dtype)
|
| 45 |
+
|
| 46 |
+
# Get output.
|
| 47 |
+
with torch.no_grad():
|
| 48 |
+
output = model.generate(**inputs, max_length=496)
|
| 49 |
+
|
| 50 |
+
paligemma_response = processor.decode(output[0], skip_special_tokens=True)[len(input_text):].lstrip("\n")
|
| 51 |
+
# print(paligemma_response) # For debugging
|
| 52 |
+
|
| 53 |
+
detections = paligemma_response.split(" ; ")
|
| 54 |
+
|
| 55 |
+
# Parse the output bounding box coordinates
|
| 56 |
+
parsed_coordinates = []
|
| 57 |
+
labels = []
|
| 58 |
+
|
| 59 |
+
for item in detections:
|
| 60 |
+
# Remove '<loc>' tags and split the string
|
| 61 |
+
# print(item)
|
| 62 |
+
detection = item.replace("<loc", "").split()
|
| 63 |
+
|
| 64 |
+
if len(detection) >= 2:
|
| 65 |
+
coordinates_str = detection[0]
|
| 66 |
+
label = detection[1]
|
| 67 |
+
labels.append(label)
|
| 68 |
+
else:
|
| 69 |
+
# No label detected, skip the iteration.
|
| 70 |
+
continue
|
| 71 |
+
|
| 72 |
+
# Split the coordinates string by '>' to get individual coordinates
|
| 73 |
+
coordinates = coordinates_str.split(">")
|
| 74 |
+
coordinates = coordinates[:4] # Slicing to ensure only 4 values
|
| 75 |
+
|
| 76 |
+
if coordinates[-1] == '':
|
| 77 |
+
coordinates = coordinates[:-1]
|
| 78 |
+
# print(coordinates)
|
| 79 |
+
|
| 80 |
+
coordinates = [int(coord)/1024 for coord in coordinates]
|
| 81 |
+
# location_values = [int(loc) for loc in re.findall(r'\d{4}', coordinates)]
|
| 82 |
+
# y1, x1, y2, x2 = [value / 1024 for value in location_values]
|
| 83 |
+
parsed_coordinates.append(coordinates)
|
| 84 |
+
|
| 85 |
+
width = img.size[0]
|
| 86 |
+
height = img.size[1]
|
| 87 |
+
|
| 88 |
+
# Draw bounding boxes on the frame using PIL
|
| 89 |
+
draw = ImageDraw.Draw(img)
|
| 90 |
+
for coordinates, label in zip(parsed_coordinates, labels):
|
| 91 |
+
draw_bounding_box(draw, coordinates, label, width=width, height=height)
|
| 92 |
+
|
| 93 |
+
# Convert the PIL Image back to OpenCV format
|
| 94 |
+
frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
| 95 |
+
|
| 96 |
+
# Write the frame to the output video
|
| 97 |
+
out.write(frame)
|
| 98 |
+
|
| 99 |
+
cap.release()
|
| 100 |
+
out.release()
|
| 101 |
+
|
| 102 |
+
return "output_paligemma_keras.avi"
|
| 103 |
+
|
| 104 |
+
with gr.Blocks() as demo:
|
| 105 |
+
gr.Markdown("## Zero-shot Object Tracking with PaliGemma")
|
| 106 |
+
gr.Markdown("This is a demo for zero-shot object tracking using [PaliGemma](https://huggingface.co/google/paligemma-3b-mix-448) vision language model by Google.")
|
| 107 |
+
gr.Markdown("Simply upload a video and enter the candidate labels, or try the example below. Text input should be ; separated. 👇")
|
| 108 |
+
with gr.Tab(label="Video"):
|
| 109 |
+
with gr.Row():
|
| 110 |
+
input_video = gr.Video(label='Input Video')
|
| 111 |
+
output_video = gr.Video(label='Output Video')
|
| 112 |
+
with gr.Row():
|
| 113 |
+
candidate_labels = gr.Textbox(
|
| 114 |
+
label='Labels',
|
| 115 |
+
placeholder='Labels separated by a comma',
|
| 116 |
+
)
|
| 117 |
+
submit = gr.Button()
|
| 118 |
+
gr.Examples(
|
| 119 |
+
fn=process_video,
|
| 120 |
+
examples=[["./cats.mp4", "bird ; cat"]],
|
| 121 |
+
inputs=[
|
| 122 |
+
input_video,
|
| 123 |
+
candidate_labels,
|
| 124 |
+
|
| 125 |
+
],
|
| 126 |
+
outputs=output_video
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
submit.click(fn=process_video,
|
| 130 |
+
inputs=[input_video, candidate_labels],
|
| 131 |
+
outputs=output_video
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
demo.launch(debug=False, show_error=True)
|