Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,112 +0,0 @@
|
|
| 1 |
-
from PIL import Image, ImageDraw, ImageFont
|
| 2 |
-
import cv2
|
| 3 |
-
import numpy as np
|
| 4 |
-
from transformers import AutoTokenizer, PaliGemmaForConditionalGeneration, PaliGemmaProcessor
|
| 5 |
-
import torch
|
| 6 |
-
import gradio as gr
|
| 7 |
-
|
| 8 |
-
# Load PaliGemma
|
| 9 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
-
model_id = "google/paligemma-3b-mix-224"
|
| 11 |
-
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device)
|
| 12 |
-
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
| 13 |
-
|
| 14 |
-
# Function to draw bounding boxes (your original code)
|
| 15 |
-
def draw_bounding_box(draw, coordinates, label, width, height):
|
| 16 |
-
y1, x1, y2, x2 = coordinates
|
| 17 |
-
y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
|
| 18 |
-
|
| 19 |
-
text_width, text_height = draw.textsize(label)
|
| 20 |
-
draw.rectangle([(x1, y1 - text_height - 2), (x1 + text_width + 4, y1)], fill="red")
|
| 21 |
-
|
| 22 |
-
# Draw label text
|
| 23 |
-
draw.text((x1 + 2, y1 - text_height - 2), label, fill="white")
|
| 24 |
-
|
| 25 |
-
# Draw bounding box
|
| 26 |
-
draw.rectangle([(x1, y1), (x2, y2)], outline="red", width=2)
|
| 27 |
-
|
| 28 |
-
def process_video(video_path, input_text):
|
| 29 |
-
cap = cv2.VideoCapture(video_path)
|
| 30 |
-
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
| 31 |
-
out = cv2.VideoWriter('output_paligemma_keras.avi', fourcc, 20.0, (int(cap.get(3)), int(cap.get(4))))
|
| 32 |
-
|
| 33 |
-
while(True):
|
| 34 |
-
ret, frame = cap.read()
|
| 35 |
-
if not ret:
|
| 36 |
-
break
|
| 37 |
-
|
| 38 |
-
# Convert the frame to a PIL Image
|
| 39 |
-
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 40 |
-
|
| 41 |
-
# Send text prompt and image as input.
|
| 42 |
-
inputs = processor(text=input_text, images=img,
|
| 43 |
-
padding="longest", do_convert_rgb=True, return_tensors="pt").to("cuda")
|
| 44 |
-
inputs = inputs.to(dtype=model.dtype)
|
| 45 |
-
|
| 46 |
-
# Get output.
|
| 47 |
-
with torch.no_grad():
|
| 48 |
-
output = model.generate(**inputs, max_length=496)
|
| 49 |
-
|
| 50 |
-
paligemma_response = processor.decode(output[0], skip_special_tokens=True)[len(input_text):].lstrip("\n")
|
| 51 |
-
# print(paligemma_response) # For debugging
|
| 52 |
-
|
| 53 |
-
detections = paligemma_response.split(" ; ")
|
| 54 |
-
|
| 55 |
-
# Parse the output bounding box coordinates
|
| 56 |
-
parsed_coordinates = []
|
| 57 |
-
labels = []
|
| 58 |
-
|
| 59 |
-
for item in detections:
|
| 60 |
-
# Remove '<loc>' tags and split the string
|
| 61 |
-
# print(item)
|
| 62 |
-
detection = item.replace("<loc", "").split()
|
| 63 |
-
|
| 64 |
-
if len(detection) >= 2:
|
| 65 |
-
coordinates_str = detection[0]
|
| 66 |
-
label = detection[1]
|
| 67 |
-
labels.append(label)
|
| 68 |
-
else:
|
| 69 |
-
# No label detected, skip the iteration.
|
| 70 |
-
continue
|
| 71 |
-
|
| 72 |
-
# Split the coordinates string by '>' to get individual coordinates
|
| 73 |
-
coordinates = coordinates_str.split(">")
|
| 74 |
-
coordinates = coordinates[:4] # Slicing to ensure only 4 values
|
| 75 |
-
|
| 76 |
-
if coordinates[-1] == '':
|
| 77 |
-
coordinates = coordinates[:-1]
|
| 78 |
-
# print(coordinates)
|
| 79 |
-
|
| 80 |
-
coordinates = [int(coord)/1024 for coord in coordinates]
|
| 81 |
-
# location_values = [int(loc) for loc in re.findall(r'\d{4}', coordinates)]
|
| 82 |
-
# y1, x1, y2, x2 = [value / 1024 for value in location_values]
|
| 83 |
-
parsed_coordinates.append(coordinates)
|
| 84 |
-
|
| 85 |
-
width = img.size[0]
|
| 86 |
-
height = img.size[1]
|
| 87 |
-
|
| 88 |
-
# Draw bounding boxes on the frame using PIL
|
| 89 |
-
draw = ImageDraw.Draw(img)
|
| 90 |
-
for coordinates, label in zip(parsed_coordinates, labels):
|
| 91 |
-
draw_bounding_box(draw, coordinates, label, width=width, height=height)
|
| 92 |
-
|
| 93 |
-
# Convert the PIL Image back to OpenCV format
|
| 94 |
-
frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
| 95 |
-
|
| 96 |
-
# Write the frame to the output video
|
| 97 |
-
out.write(frame)
|
| 98 |
-
|
| 99 |
-
cap.release()
|
| 100 |
-
out.release()
|
| 101 |
-
|
| 102 |
-
return "output_paligemma_keras.avi"
|
| 103 |
-
|
| 104 |
-
demo = gr.Interface(
|
| 105 |
-
fn=process_video,
|
| 106 |
-
inputs=[gr.Video(label="Input Video"), gr.Textbox(label="detect <class-name>")],
|
| 107 |
-
outputs=[gr.Video(label="Output Video")],
|
| 108 |
-
title="PaliGemma Object Detection",
|
| 109 |
-
description="Upload a video and specify the object you want to detect."
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|