NSTiwari commited on
Commit
e5df072
·
verified ·
1 Parent(s): 8ed5db5

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -112
app.py DELETED
@@ -1,112 +0,0 @@
1
- from PIL import Image, ImageDraw, ImageFont
2
- import cv2
3
- import numpy as np
4
- from transformers import AutoTokenizer, PaliGemmaForConditionalGeneration, PaliGemmaProcessor
5
- import torch
6
- import gradio as gr
7
-
8
- # Load PaliGemma
9
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
- model_id = "google/paligemma-3b-mix-224"
11
- model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device)
12
- processor = PaliGemmaProcessor.from_pretrained(model_id)
13
-
14
- # Function to draw bounding boxes (your original code)
15
- def draw_bounding_box(draw, coordinates, label, width, height):
16
- y1, x1, y2, x2 = coordinates
17
- y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
18
-
19
- text_width, text_height = draw.textsize(label)
20
- draw.rectangle([(x1, y1 - text_height - 2), (x1 + text_width + 4, y1)], fill="red")
21
-
22
- # Draw label text
23
- draw.text((x1 + 2, y1 - text_height - 2), label, fill="white")
24
-
25
- # Draw bounding box
26
- draw.rectangle([(x1, y1), (x2, y2)], outline="red", width=2)
27
-
28
- def process_video(video_path, input_text):
29
- cap = cv2.VideoCapture(video_path)
30
- fourcc = cv2.VideoWriter_fourcc(*'XVID')
31
- out = cv2.VideoWriter('output_paligemma_keras.avi', fourcc, 20.0, (int(cap.get(3)), int(cap.get(4))))
32
-
33
- while(True):
34
- ret, frame = cap.read()
35
- if not ret:
36
- break
37
-
38
- # Convert the frame to a PIL Image
39
- img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
40
-
41
- # Send text prompt and image as input.
42
- inputs = processor(text=input_text, images=img,
43
- padding="longest", do_convert_rgb=True, return_tensors="pt").to("cuda")
44
- inputs = inputs.to(dtype=model.dtype)
45
-
46
- # Get output.
47
- with torch.no_grad():
48
- output = model.generate(**inputs, max_length=496)
49
-
50
- paligemma_response = processor.decode(output[0], skip_special_tokens=True)[len(input_text):].lstrip("\n")
51
- # print(paligemma_response) # For debugging
52
-
53
- detections = paligemma_response.split(" ; ")
54
-
55
- # Parse the output bounding box coordinates
56
- parsed_coordinates = []
57
- labels = []
58
-
59
- for item in detections:
60
- # Remove '<loc>' tags and split the string
61
- # print(item)
62
- detection = item.replace("<loc", "").split()
63
-
64
- if len(detection) >= 2:
65
- coordinates_str = detection[0]
66
- label = detection[1]
67
- labels.append(label)
68
- else:
69
- # No label detected, skip the iteration.
70
- continue
71
-
72
- # Split the coordinates string by '>' to get individual coordinates
73
- coordinates = coordinates_str.split(">")
74
- coordinates = coordinates[:4] # Slicing to ensure only 4 values
75
-
76
- if coordinates[-1] == '':
77
- coordinates = coordinates[:-1]
78
- # print(coordinates)
79
-
80
- coordinates = [int(coord)/1024 for coord in coordinates]
81
- # location_values = [int(loc) for loc in re.findall(r'\d{4}', coordinates)]
82
- # y1, x1, y2, x2 = [value / 1024 for value in location_values]
83
- parsed_coordinates.append(coordinates)
84
-
85
- width = img.size[0]
86
- height = img.size[1]
87
-
88
- # Draw bounding boxes on the frame using PIL
89
- draw = ImageDraw.Draw(img)
90
- for coordinates, label in zip(parsed_coordinates, labels):
91
- draw_bounding_box(draw, coordinates, label, width=width, height=height)
92
-
93
- # Convert the PIL Image back to OpenCV format
94
- frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
95
-
96
- # Write the frame to the output video
97
- out.write(frame)
98
-
99
- cap.release()
100
- out.release()
101
-
102
- return "output_paligemma_keras.avi"
103
-
104
- demo = gr.Interface(
105
- fn=process_video,
106
- inputs=[gr.Video(label="Input Video"), gr.Textbox(label="detect <class-name>")],
107
- outputs=[gr.Video(label="Output Video")],
108
- title="PaliGemma Object Detection",
109
- description="Upload a video and specify the object you want to detect."
110
- )
111
-
112
- demo.launch(share=True)