Spaces:
No application file
No application file
| import cv2 | |
| import cv2.typing | |
| import typing | |
| # Enumerations | |
| VAR_NUMERICAL: int | |
| VAR_ORDERED: int | |
| VAR_CATEGORICAL: int | |
| VariableTypes = int | |
| """One of [VAR_NUMERICAL, VAR_ORDERED, VAR_CATEGORICAL]""" | |
| TEST_ERROR: int | |
| TRAIN_ERROR: int | |
| ErrorTypes = int | |
| """One of [TEST_ERROR, TRAIN_ERROR]""" | |
| ROW_SAMPLE: int | |
| COL_SAMPLE: int | |
| SampleTypes = int | |
| """One of [ROW_SAMPLE, COL_SAMPLE]""" | |
| StatModel_UPDATE_MODEL: int | |
| STAT_MODEL_UPDATE_MODEL: int | |
| StatModel_RAW_OUTPUT: int | |
| STAT_MODEL_RAW_OUTPUT: int | |
| StatModel_COMPRESSED_INPUT: int | |
| STAT_MODEL_COMPRESSED_INPUT: int | |
| StatModel_PREPROCESSED_INPUT: int | |
| STAT_MODEL_PREPROCESSED_INPUT: int | |
| StatModel_Flags = int | |
| """One of [StatModel_UPDATE_MODEL, STAT_MODEL_UPDATE_MODEL, StatModel_RAW_OUTPUT, STAT_MODEL_RAW_OUTPUT, StatModel_COMPRESSED_INPUT, STAT_MODEL_COMPRESSED_INPUT, StatModel_PREPROCESSED_INPUT, STAT_MODEL_PREPROCESSED_INPUT]""" | |
| KNearest_BRUTE_FORCE: int | |
| KNEAREST_BRUTE_FORCE: int | |
| KNearest_KDTREE: int | |
| KNEAREST_KDTREE: int | |
| KNearest_Types = int | |
| """One of [KNearest_BRUTE_FORCE, KNEAREST_BRUTE_FORCE, KNearest_KDTREE, KNEAREST_KDTREE]""" | |
| SVM_C_SVC: int | |
| SVM_NU_SVC: int | |
| SVM_ONE_CLASS: int | |
| SVM_EPS_SVR: int | |
| SVM_NU_SVR: int | |
| SVM_Types = int | |
| """One of [SVM_C_SVC, SVM_NU_SVC, SVM_ONE_CLASS, SVM_EPS_SVR, SVM_NU_SVR]""" | |
| SVM_CUSTOM: int | |
| SVM_LINEAR: int | |
| SVM_POLY: int | |
| SVM_RBF: int | |
| SVM_SIGMOID: int | |
| SVM_CHI2: int | |
| SVM_INTER: int | |
| SVM_KernelTypes = int | |
| """One of [SVM_CUSTOM, SVM_LINEAR, SVM_POLY, SVM_RBF, SVM_SIGMOID, SVM_CHI2, SVM_INTER]""" | |
| SVM_C: int | |
| SVM_GAMMA: int | |
| SVM_P: int | |
| SVM_NU: int | |
| SVM_COEF: int | |
| SVM_DEGREE: int | |
| SVM_ParamTypes = int | |
| """One of [SVM_C, SVM_GAMMA, SVM_P, SVM_NU, SVM_COEF, SVM_DEGREE]""" | |
| EM_COV_MAT_SPHERICAL: int | |
| EM_COV_MAT_DIAGONAL: int | |
| EM_COV_MAT_GENERIC: int | |
| EM_COV_MAT_DEFAULT: int | |
| EM_Types = int | |
| """One of [EM_COV_MAT_SPHERICAL, EM_COV_MAT_DIAGONAL, EM_COV_MAT_GENERIC, EM_COV_MAT_DEFAULT]""" | |
| EM_DEFAULT_NCLUSTERS: int | |
| EM_DEFAULT_MAX_ITERS: int | |
| EM_START_E_STEP: int | |
| EM_START_M_STEP: int | |
| EM_START_AUTO_STEP: int | |
| DTrees_PREDICT_AUTO: int | |
| DTREES_PREDICT_AUTO: int | |
| DTrees_PREDICT_SUM: int | |
| DTREES_PREDICT_SUM: int | |
| DTrees_PREDICT_MAX_VOTE: int | |
| DTREES_PREDICT_MAX_VOTE: int | |
| DTrees_PREDICT_MASK: int | |
| DTREES_PREDICT_MASK: int | |
| DTrees_Flags = int | |
| """One of [DTrees_PREDICT_AUTO, DTREES_PREDICT_AUTO, DTrees_PREDICT_SUM, DTREES_PREDICT_SUM, DTrees_PREDICT_MAX_VOTE, DTREES_PREDICT_MAX_VOTE, DTrees_PREDICT_MASK, DTREES_PREDICT_MASK]""" | |
| Boost_DISCRETE: int | |
| BOOST_DISCRETE: int | |
| Boost_REAL: int | |
| BOOST_REAL: int | |
| Boost_LOGIT: int | |
| BOOST_LOGIT: int | |
| Boost_GENTLE: int | |
| BOOST_GENTLE: int | |
| Boost_Types = int | |
| """One of [Boost_DISCRETE, BOOST_DISCRETE, Boost_REAL, BOOST_REAL, Boost_LOGIT, BOOST_LOGIT, Boost_GENTLE, BOOST_GENTLE]""" | |
| ANN_MLP_BACKPROP: int | |
| ANN_MLP_RPROP: int | |
| ANN_MLP_ANNEAL: int | |
| ANN_MLP_TrainingMethods = int | |
| """One of [ANN_MLP_BACKPROP, ANN_MLP_RPROP, ANN_MLP_ANNEAL]""" | |
| ANN_MLP_IDENTITY: int | |
| ANN_MLP_SIGMOID_SYM: int | |
| ANN_MLP_GAUSSIAN: int | |
| ANN_MLP_RELU: int | |
| ANN_MLP_LEAKYRELU: int | |
| ANN_MLP_ActivationFunctions = int | |
| """One of [ANN_MLP_IDENTITY, ANN_MLP_SIGMOID_SYM, ANN_MLP_GAUSSIAN, ANN_MLP_RELU, ANN_MLP_LEAKYRELU]""" | |
| ANN_MLP_UPDATE_WEIGHTS: int | |
| ANN_MLP_NO_INPUT_SCALE: int | |
| ANN_MLP_NO_OUTPUT_SCALE: int | |
| ANN_MLP_TrainFlags = int | |
| """One of [ANN_MLP_UPDATE_WEIGHTS, ANN_MLP_NO_INPUT_SCALE, ANN_MLP_NO_OUTPUT_SCALE]""" | |
| LogisticRegression_REG_DISABLE: int | |
| LOGISTIC_REGRESSION_REG_DISABLE: int | |
| LogisticRegression_REG_L1: int | |
| LOGISTIC_REGRESSION_REG_L1: int | |
| LogisticRegression_REG_L2: int | |
| LOGISTIC_REGRESSION_REG_L2: int | |
| LogisticRegression_RegKinds = int | |
| """One of [LogisticRegression_REG_DISABLE, LOGISTIC_REGRESSION_REG_DISABLE, LogisticRegression_REG_L1, LOGISTIC_REGRESSION_REG_L1, LogisticRegression_REG_L2, LOGISTIC_REGRESSION_REG_L2]""" | |
| LogisticRegression_BATCH: int | |
| LOGISTIC_REGRESSION_BATCH: int | |
| LogisticRegression_MINI_BATCH: int | |
| LOGISTIC_REGRESSION_MINI_BATCH: int | |
| LogisticRegression_Methods = int | |
| """One of [LogisticRegression_BATCH, LOGISTIC_REGRESSION_BATCH, LogisticRegression_MINI_BATCH, LOGISTIC_REGRESSION_MINI_BATCH]""" | |
| SVMSGD_SGD: int | |
| SVMSGD_ASGD: int | |
| SVMSGD_SvmsgdType = int | |
| """One of [SVMSGD_SGD, SVMSGD_ASGD]""" | |
| SVMSGD_SOFT_MARGIN: int | |
| SVMSGD_HARD_MARGIN: int | |
| SVMSGD_MarginType = int | |
| """One of [SVMSGD_SOFT_MARGIN, SVMSGD_HARD_MARGIN]""" | |
| # Classes | |
| class ParamGrid: | |
| minVal: float | |
| maxVal: float | |
| logStep: float | |
| # Functions | |
| def create(cls, minVal: float = ..., maxVal: float = ..., logstep: float = ...) -> ParamGrid: ... | |
| class TrainData: | |
| # Functions | |
| def getLayout(self) -> int: ... | |
| def getNTrainSamples(self) -> int: ... | |
| def getNTestSamples(self) -> int: ... | |
| def getNSamples(self) -> int: ... | |
| def getNVars(self) -> int: ... | |
| def getNAllVars(self) -> int: ... | |
| def getSample(self, varIdx: cv2.typing.MatLike, sidx: int, buf: float) -> None: ... | |
| def getSample(self, varIdx: cv2.UMat, sidx: int, buf: float) -> None: ... | |
| def getSamples(self) -> cv2.typing.MatLike: ... | |
| def getMissing(self) -> cv2.typing.MatLike: ... | |
| def getTrainSamples(self, layout: int = ..., compressSamples: bool = ..., compressVars: bool = ...) -> cv2.typing.MatLike: ... | |
| def getTrainResponses(self) -> cv2.typing.MatLike: ... | |
| def getTrainNormCatResponses(self) -> cv2.typing.MatLike: ... | |
| def getTestResponses(self) -> cv2.typing.MatLike: ... | |
| def getTestNormCatResponses(self) -> cv2.typing.MatLike: ... | |
| def getResponses(self) -> cv2.typing.MatLike: ... | |
| def getNormCatResponses(self) -> cv2.typing.MatLike: ... | |
| def getSampleWeights(self) -> cv2.typing.MatLike: ... | |
| def getTrainSampleWeights(self) -> cv2.typing.MatLike: ... | |
| def getTestSampleWeights(self) -> cv2.typing.MatLike: ... | |
| def getVarIdx(self) -> cv2.typing.MatLike: ... | |
| def getVarType(self) -> cv2.typing.MatLike: ... | |
| def getVarSymbolFlags(self) -> cv2.typing.MatLike: ... | |
| def getResponseType(self) -> int: ... | |
| def getTrainSampleIdx(self) -> cv2.typing.MatLike: ... | |
| def getTestSampleIdx(self) -> cv2.typing.MatLike: ... | |
| def getValues(self, vi: int, sidx: cv2.typing.MatLike, values: float) -> None: ... | |
| def getValues(self, vi: int, sidx: cv2.UMat, values: float) -> None: ... | |
| def getDefaultSubstValues(self) -> cv2.typing.MatLike: ... | |
| def getCatCount(self, vi: int) -> int: ... | |
| def getClassLabels(self) -> cv2.typing.MatLike: ... | |
| def getCatOfs(self) -> cv2.typing.MatLike: ... | |
| def getCatMap(self) -> cv2.typing.MatLike: ... | |
| def setTrainTestSplit(self, count: int, shuffle: bool = ...) -> None: ... | |
| def setTrainTestSplitRatio(self, ratio: float, shuffle: bool = ...) -> None: ... | |
| def shuffleTrainTest(self) -> None: ... | |
| def getTestSamples(self) -> cv2.typing.MatLike: ... | |
| def getNames(self, names: typing.Sequence[str]) -> None: ... | |
| def getSubVector(vec: cv2.typing.MatLike, idx: cv2.typing.MatLike) -> cv2.typing.MatLike: ... | |
| def getSubMatrix(matrix: cv2.typing.MatLike, idx: cv2.typing.MatLike, layout: int) -> cv2.typing.MatLike: ... | |
| def create(cls, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, varIdx: cv2.typing.MatLike | None = ..., sampleIdx: cv2.typing.MatLike | None = ..., sampleWeights: cv2.typing.MatLike | None = ..., varType: cv2.typing.MatLike | None = ...) -> TrainData: ... | |
| def create(cls, samples: cv2.UMat, layout: int, responses: cv2.UMat, varIdx: cv2.UMat | None = ..., sampleIdx: cv2.UMat | None = ..., sampleWeights: cv2.UMat | None = ..., varType: cv2.UMat | None = ...) -> TrainData: ... | |
| class StatModel(cv2.Algorithm): | |
| # Functions | |
| def getVarCount(self) -> int: ... | |
| def empty(self) -> bool: ... | |
| def isTrained(self) -> bool: ... | |
| def isClassifier(self) -> bool: ... | |
| def train(self, trainData: TrainData, flags: int = ...) -> bool: ... | |
| def train(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike) -> bool: ... | |
| def train(self, samples: cv2.UMat, layout: int, responses: cv2.UMat) -> bool: ... | |
| def calcError(self, data: TrainData, test: bool, resp: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike]: ... | |
| def calcError(self, data: TrainData, test: bool, resp: cv2.UMat | None = ...) -> tuple[float, cv2.UMat]: ... | |
| def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ... | |
| def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ... | |
| class NormalBayesClassifier(StatModel): | |
| # Functions | |
| def predictProb(self, inputs: cv2.typing.MatLike, outputs: cv2.typing.MatLike | None = ..., outputProbs: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ... | |
| def predictProb(self, inputs: cv2.UMat, outputs: cv2.UMat | None = ..., outputProbs: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ... | |
| def create(cls) -> NormalBayesClassifier: ... | |
| def load(cls, filepath: str, nodeName: str = ...) -> NormalBayesClassifier: ... | |
| class KNearest(StatModel): | |
| # Functions | |
| def getDefaultK(self) -> int: ... | |
| def setDefaultK(self, val: int) -> None: ... | |
| def getIsClassifier(self) -> bool: ... | |
| def setIsClassifier(self, val: bool) -> None: ... | |
| def getEmax(self) -> int: ... | |
| def setEmax(self, val: int) -> None: ... | |
| def getAlgorithmType(self) -> int: ... | |
| def setAlgorithmType(self, val: int) -> None: ... | |
| def findNearest(self, samples: cv2.typing.MatLike, k: int, results: cv2.typing.MatLike | None = ..., neighborResponses: cv2.typing.MatLike | None = ..., dist: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ... | |
| def findNearest(self, samples: cv2.UMat, k: int, results: cv2.UMat | None = ..., neighborResponses: cv2.UMat | None = ..., dist: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat, cv2.UMat]: ... | |
| def create(cls) -> KNearest: ... | |
| def load(cls, filepath: str) -> KNearest: ... | |
| class SVM(StatModel): | |
| # Functions | |
| def getType(self) -> int: ... | |
| def setType(self, val: int) -> None: ... | |
| def getGamma(self) -> float: ... | |
| def setGamma(self, val: float) -> None: ... | |
| def getCoef0(self) -> float: ... | |
| def setCoef0(self, val: float) -> None: ... | |
| def getDegree(self) -> float: ... | |
| def setDegree(self, val: float) -> None: ... | |
| def getC(self) -> float: ... | |
| def setC(self, val: float) -> None: ... | |
| def getNu(self) -> float: ... | |
| def setNu(self, val: float) -> None: ... | |
| def getP(self) -> float: ... | |
| def setP(self, val: float) -> None: ... | |
| def getClassWeights(self) -> cv2.typing.MatLike: ... | |
| def setClassWeights(self, val: cv2.typing.MatLike) -> None: ... | |
| def getTermCriteria(self) -> cv2.typing.TermCriteria: ... | |
| def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... | |
| def getKernelType(self) -> int: ... | |
| def setKernel(self, kernelType: int) -> None: ... | |
| def trainAuto(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ... | |
| def trainAuto(self, samples: cv2.UMat, layout: int, responses: cv2.UMat, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ... | |
| def getSupportVectors(self) -> cv2.typing.MatLike: ... | |
| def getUncompressedSupportVectors(self) -> cv2.typing.MatLike: ... | |
| def getDecisionFunction(self, i: int, alpha: cv2.typing.MatLike | None = ..., svidx: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ... | |
| def getDecisionFunction(self, i: int, alpha: cv2.UMat | None = ..., svidx: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ... | |
| def getDefaultGridPtr(param_id: int) -> ParamGrid: ... | |
| def create(cls) -> SVM: ... | |
| def load(cls, filepath: str) -> SVM: ... | |
| class EM(StatModel): | |
| # Functions | |
| def getClustersNumber(self) -> int: ... | |
| def setClustersNumber(self, val: int) -> None: ... | |
| def getCovarianceMatrixType(self) -> int: ... | |
| def setCovarianceMatrixType(self, val: int) -> None: ... | |
| def getTermCriteria(self) -> cv2.typing.TermCriteria: ... | |
| def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... | |
| def getWeights(self) -> cv2.typing.MatLike: ... | |
| def getMeans(self) -> cv2.typing.MatLike: ... | |
| def getCovs(self, covs: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ... | |
| def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ... | |
| def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ... | |
| def predict2(self, sample: cv2.typing.MatLike, probs: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.Vec2d, cv2.typing.MatLike]: ... | |
| def predict2(self, sample: cv2.UMat, probs: cv2.UMat | None = ...) -> tuple[cv2.typing.Vec2d, cv2.UMat]: ... | |
| def trainEM(self, samples: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ... | |
| def trainEM(self, samples: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ... | |
| def trainE(self, samples: cv2.typing.MatLike, means0: cv2.typing.MatLike, covs0: cv2.typing.MatLike | None = ..., weights0: cv2.typing.MatLike | None = ..., logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ... | |
| def trainE(self, samples: cv2.UMat, means0: cv2.UMat, covs0: cv2.UMat | None = ..., weights0: cv2.UMat | None = ..., logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ... | |
| def trainM(self, samples: cv2.typing.MatLike, probs0: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ... | |
| def trainM(self, samples: cv2.UMat, probs0: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ... | |
| def create(cls) -> EM: ... | |
| def load(cls, filepath: str, nodeName: str = ...) -> EM: ... | |
| class DTrees(StatModel): | |
| # Functions | |
| def getMaxCategories(self) -> int: ... | |
| def setMaxCategories(self, val: int) -> None: ... | |
| def getMaxDepth(self) -> int: ... | |
| def setMaxDepth(self, val: int) -> None: ... | |
| def getMinSampleCount(self) -> int: ... | |
| def setMinSampleCount(self, val: int) -> None: ... | |
| def getCVFolds(self) -> int: ... | |
| def setCVFolds(self, val: int) -> None: ... | |
| def getUseSurrogates(self) -> bool: ... | |
| def setUseSurrogates(self, val: bool) -> None: ... | |
| def getUse1SERule(self) -> bool: ... | |
| def setUse1SERule(self, val: bool) -> None: ... | |
| def getTruncatePrunedTree(self) -> bool: ... | |
| def setTruncatePrunedTree(self, val: bool) -> None: ... | |
| def getRegressionAccuracy(self) -> float: ... | |
| def setRegressionAccuracy(self, val: float) -> None: ... | |
| def getPriors(self) -> cv2.typing.MatLike: ... | |
| def setPriors(self, val: cv2.typing.MatLike) -> None: ... | |
| def create(cls) -> DTrees: ... | |
| def load(cls, filepath: str, nodeName: str = ...) -> DTrees: ... | |
| class ANN_MLP(StatModel): | |
| # Functions | |
| def setTrainMethod(self, method: int, param1: float = ..., param2: float = ...) -> None: ... | |
| def getTrainMethod(self) -> int: ... | |
| def setActivationFunction(self, type: int, param1: float = ..., param2: float = ...) -> None: ... | |
| def setLayerSizes(self, _layer_sizes: cv2.typing.MatLike) -> None: ... | |
| def setLayerSizes(self, _layer_sizes: cv2.UMat) -> None: ... | |
| def getLayerSizes(self) -> cv2.typing.MatLike: ... | |
| def getTermCriteria(self) -> cv2.typing.TermCriteria: ... | |
| def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... | |
| def getBackpropWeightScale(self) -> float: ... | |
| def setBackpropWeightScale(self, val: float) -> None: ... | |
| def getBackpropMomentumScale(self) -> float: ... | |
| def setBackpropMomentumScale(self, val: float) -> None: ... | |
| def getRpropDW0(self) -> float: ... | |
| def setRpropDW0(self, val: float) -> None: ... | |
| def getRpropDWPlus(self) -> float: ... | |
| def setRpropDWPlus(self, val: float) -> None: ... | |
| def getRpropDWMinus(self) -> float: ... | |
| def setRpropDWMinus(self, val: float) -> None: ... | |
| def getRpropDWMin(self) -> float: ... | |
| def setRpropDWMin(self, val: float) -> None: ... | |
| def getRpropDWMax(self) -> float: ... | |
| def setRpropDWMax(self, val: float) -> None: ... | |
| def getAnnealInitialT(self) -> float: ... | |
| def setAnnealInitialT(self, val: float) -> None: ... | |
| def getAnnealFinalT(self) -> float: ... | |
| def setAnnealFinalT(self, val: float) -> None: ... | |
| def getAnnealCoolingRatio(self) -> float: ... | |
| def setAnnealCoolingRatio(self, val: float) -> None: ... | |
| def getAnnealItePerStep(self) -> int: ... | |
| def setAnnealItePerStep(self, val: int) -> None: ... | |
| def getWeights(self, layerIdx: int) -> cv2.typing.MatLike: ... | |
| def create(cls) -> ANN_MLP: ... | |
| def load(cls, filepath: str) -> ANN_MLP: ... | |
| class LogisticRegression(StatModel): | |
| # Functions | |
| def getLearningRate(self) -> float: ... | |
| def setLearningRate(self, val: float) -> None: ... | |
| def getIterations(self) -> int: ... | |
| def setIterations(self, val: int) -> None: ... | |
| def getRegularization(self) -> int: ... | |
| def setRegularization(self, val: int) -> None: ... | |
| def getTrainMethod(self) -> int: ... | |
| def setTrainMethod(self, val: int) -> None: ... | |
| def getMiniBatchSize(self) -> int: ... | |
| def setMiniBatchSize(self, val: int) -> None: ... | |
| def getTermCriteria(self) -> cv2.typing.TermCriteria: ... | |
| def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... | |
| def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ... | |
| def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ... | |
| def get_learnt_thetas(self) -> cv2.typing.MatLike: ... | |
| def create(cls) -> LogisticRegression: ... | |
| def load(cls, filepath: str, nodeName: str = ...) -> LogisticRegression: ... | |
| class SVMSGD(StatModel): | |
| # Functions | |
| def getWeights(self) -> cv2.typing.MatLike: ... | |
| def getShift(self) -> float: ... | |
| def create(cls) -> SVMSGD: ... | |
| def load(cls, filepath: str, nodeName: str = ...) -> SVMSGD: ... | |
| def setOptimalParameters(self, svmsgdType: int = ..., marginType: int = ...) -> None: ... | |
| def getSvmsgdType(self) -> int: ... | |
| def setSvmsgdType(self, svmsgdType: int) -> None: ... | |
| def getMarginType(self) -> int: ... | |
| def setMarginType(self, marginType: int) -> None: ... | |
| def getMarginRegularization(self) -> float: ... | |
| def setMarginRegularization(self, marginRegularization: float) -> None: ... | |
| def getInitialStepSize(self) -> float: ... | |
| def setInitialStepSize(self, InitialStepSize: float) -> None: ... | |
| def getStepDecreasingPower(self) -> float: ... | |
| def setStepDecreasingPower(self, stepDecreasingPower: float) -> None: ... | |
| def getTermCriteria(self) -> cv2.typing.TermCriteria: ... | |
| def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... | |
| class RTrees(DTrees): | |
| # Functions | |
| def getCalculateVarImportance(self) -> bool: ... | |
| def setCalculateVarImportance(self, val: bool) -> None: ... | |
| def getActiveVarCount(self) -> int: ... | |
| def setActiveVarCount(self, val: int) -> None: ... | |
| def getTermCriteria(self) -> cv2.typing.TermCriteria: ... | |
| def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... | |
| def getVarImportance(self) -> cv2.typing.MatLike: ... | |
| def getVotes(self, samples: cv2.typing.MatLike, flags: int, results: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ... | |
| def getVotes(self, samples: cv2.UMat, flags: int, results: cv2.UMat | None = ...) -> cv2.UMat: ... | |
| def getOOBError(self) -> float: ... | |
| def create(cls) -> RTrees: ... | |
| def load(cls, filepath: str, nodeName: str = ...) -> RTrees: ... | |
| class Boost(DTrees): | |
| # Functions | |
| def getBoostType(self) -> int: ... | |
| def setBoostType(self, val: int) -> None: ... | |
| def getWeakCount(self) -> int: ... | |
| def setWeakCount(self, val: int) -> None: ... | |
| def getWeightTrimRate(self) -> float: ... | |
| def setWeightTrimRate(self, val: float) -> None: ... | |
| def create(cls) -> Boost: ... | |
| def load(cls, filepath: str, nodeName: str = ...) -> Boost: ... | |