Spaces:
No application file
No application file
import cv2 | |
import cv2.typing | |
import typing | |
# Enumerations | |
VAR_NUMERICAL: int | |
VAR_ORDERED: int | |
VAR_CATEGORICAL: int | |
VariableTypes = int | |
"""One of [VAR_NUMERICAL, VAR_ORDERED, VAR_CATEGORICAL]""" | |
TEST_ERROR: int | |
TRAIN_ERROR: int | |
ErrorTypes = int | |
"""One of [TEST_ERROR, TRAIN_ERROR]""" | |
ROW_SAMPLE: int | |
COL_SAMPLE: int | |
SampleTypes = int | |
"""One of [ROW_SAMPLE, COL_SAMPLE]""" | |
StatModel_UPDATE_MODEL: int | |
STAT_MODEL_UPDATE_MODEL: int | |
StatModel_RAW_OUTPUT: int | |
STAT_MODEL_RAW_OUTPUT: int | |
StatModel_COMPRESSED_INPUT: int | |
STAT_MODEL_COMPRESSED_INPUT: int | |
StatModel_PREPROCESSED_INPUT: int | |
STAT_MODEL_PREPROCESSED_INPUT: int | |
StatModel_Flags = int | |
"""One of [StatModel_UPDATE_MODEL, STAT_MODEL_UPDATE_MODEL, StatModel_RAW_OUTPUT, STAT_MODEL_RAW_OUTPUT, StatModel_COMPRESSED_INPUT, STAT_MODEL_COMPRESSED_INPUT, StatModel_PREPROCESSED_INPUT, STAT_MODEL_PREPROCESSED_INPUT]""" | |
KNearest_BRUTE_FORCE: int | |
KNEAREST_BRUTE_FORCE: int | |
KNearest_KDTREE: int | |
KNEAREST_KDTREE: int | |
KNearest_Types = int | |
"""One of [KNearest_BRUTE_FORCE, KNEAREST_BRUTE_FORCE, KNearest_KDTREE, KNEAREST_KDTREE]""" | |
SVM_C_SVC: int | |
SVM_NU_SVC: int | |
SVM_ONE_CLASS: int | |
SVM_EPS_SVR: int | |
SVM_NU_SVR: int | |
SVM_Types = int | |
"""One of [SVM_C_SVC, SVM_NU_SVC, SVM_ONE_CLASS, SVM_EPS_SVR, SVM_NU_SVR]""" | |
SVM_CUSTOM: int | |
SVM_LINEAR: int | |
SVM_POLY: int | |
SVM_RBF: int | |
SVM_SIGMOID: int | |
SVM_CHI2: int | |
SVM_INTER: int | |
SVM_KernelTypes = int | |
"""One of [SVM_CUSTOM, SVM_LINEAR, SVM_POLY, SVM_RBF, SVM_SIGMOID, SVM_CHI2, SVM_INTER]""" | |
SVM_C: int | |
SVM_GAMMA: int | |
SVM_P: int | |
SVM_NU: int | |
SVM_COEF: int | |
SVM_DEGREE: int | |
SVM_ParamTypes = int | |
"""One of [SVM_C, SVM_GAMMA, SVM_P, SVM_NU, SVM_COEF, SVM_DEGREE]""" | |
EM_COV_MAT_SPHERICAL: int | |
EM_COV_MAT_DIAGONAL: int | |
EM_COV_MAT_GENERIC: int | |
EM_COV_MAT_DEFAULT: int | |
EM_Types = int | |
"""One of [EM_COV_MAT_SPHERICAL, EM_COV_MAT_DIAGONAL, EM_COV_MAT_GENERIC, EM_COV_MAT_DEFAULT]""" | |
EM_DEFAULT_NCLUSTERS: int | |
EM_DEFAULT_MAX_ITERS: int | |
EM_START_E_STEP: int | |
EM_START_M_STEP: int | |
EM_START_AUTO_STEP: int | |
DTrees_PREDICT_AUTO: int | |
DTREES_PREDICT_AUTO: int | |
DTrees_PREDICT_SUM: int | |
DTREES_PREDICT_SUM: int | |
DTrees_PREDICT_MAX_VOTE: int | |
DTREES_PREDICT_MAX_VOTE: int | |
DTrees_PREDICT_MASK: int | |
DTREES_PREDICT_MASK: int | |
DTrees_Flags = int | |
"""One of [DTrees_PREDICT_AUTO, DTREES_PREDICT_AUTO, DTrees_PREDICT_SUM, DTREES_PREDICT_SUM, DTrees_PREDICT_MAX_VOTE, DTREES_PREDICT_MAX_VOTE, DTrees_PREDICT_MASK, DTREES_PREDICT_MASK]""" | |
Boost_DISCRETE: int | |
BOOST_DISCRETE: int | |
Boost_REAL: int | |
BOOST_REAL: int | |
Boost_LOGIT: int | |
BOOST_LOGIT: int | |
Boost_GENTLE: int | |
BOOST_GENTLE: int | |
Boost_Types = int | |
"""One of [Boost_DISCRETE, BOOST_DISCRETE, Boost_REAL, BOOST_REAL, Boost_LOGIT, BOOST_LOGIT, Boost_GENTLE, BOOST_GENTLE]""" | |
ANN_MLP_BACKPROP: int | |
ANN_MLP_RPROP: int | |
ANN_MLP_ANNEAL: int | |
ANN_MLP_TrainingMethods = int | |
"""One of [ANN_MLP_BACKPROP, ANN_MLP_RPROP, ANN_MLP_ANNEAL]""" | |
ANN_MLP_IDENTITY: int | |
ANN_MLP_SIGMOID_SYM: int | |
ANN_MLP_GAUSSIAN: int | |
ANN_MLP_RELU: int | |
ANN_MLP_LEAKYRELU: int | |
ANN_MLP_ActivationFunctions = int | |
"""One of [ANN_MLP_IDENTITY, ANN_MLP_SIGMOID_SYM, ANN_MLP_GAUSSIAN, ANN_MLP_RELU, ANN_MLP_LEAKYRELU]""" | |
ANN_MLP_UPDATE_WEIGHTS: int | |
ANN_MLP_NO_INPUT_SCALE: int | |
ANN_MLP_NO_OUTPUT_SCALE: int | |
ANN_MLP_TrainFlags = int | |
"""One of [ANN_MLP_UPDATE_WEIGHTS, ANN_MLP_NO_INPUT_SCALE, ANN_MLP_NO_OUTPUT_SCALE]""" | |
LogisticRegression_REG_DISABLE: int | |
LOGISTIC_REGRESSION_REG_DISABLE: int | |
LogisticRegression_REG_L1: int | |
LOGISTIC_REGRESSION_REG_L1: int | |
LogisticRegression_REG_L2: int | |
LOGISTIC_REGRESSION_REG_L2: int | |
LogisticRegression_RegKinds = int | |
"""One of [LogisticRegression_REG_DISABLE, LOGISTIC_REGRESSION_REG_DISABLE, LogisticRegression_REG_L1, LOGISTIC_REGRESSION_REG_L1, LogisticRegression_REG_L2, LOGISTIC_REGRESSION_REG_L2]""" | |
LogisticRegression_BATCH: int | |
LOGISTIC_REGRESSION_BATCH: int | |
LogisticRegression_MINI_BATCH: int | |
LOGISTIC_REGRESSION_MINI_BATCH: int | |
LogisticRegression_Methods = int | |
"""One of [LogisticRegression_BATCH, LOGISTIC_REGRESSION_BATCH, LogisticRegression_MINI_BATCH, LOGISTIC_REGRESSION_MINI_BATCH]""" | |
SVMSGD_SGD: int | |
SVMSGD_ASGD: int | |
SVMSGD_SvmsgdType = int | |
"""One of [SVMSGD_SGD, SVMSGD_ASGD]""" | |
SVMSGD_SOFT_MARGIN: int | |
SVMSGD_HARD_MARGIN: int | |
SVMSGD_MarginType = int | |
"""One of [SVMSGD_SOFT_MARGIN, SVMSGD_HARD_MARGIN]""" | |
# Classes | |
class ParamGrid: | |
minVal: float | |
maxVal: float | |
logStep: float | |
# Functions | |
def create(cls, minVal: float = ..., maxVal: float = ..., logstep: float = ...) -> ParamGrid: ... | |
class TrainData: | |
# Functions | |
def getLayout(self) -> int: ... | |
def getNTrainSamples(self) -> int: ... | |
def getNTestSamples(self) -> int: ... | |
def getNSamples(self) -> int: ... | |
def getNVars(self) -> int: ... | |
def getNAllVars(self) -> int: ... | |
def getSample(self, varIdx: cv2.typing.MatLike, sidx: int, buf: float) -> None: ... | |
def getSample(self, varIdx: cv2.UMat, sidx: int, buf: float) -> None: ... | |
def getSamples(self) -> cv2.typing.MatLike: ... | |
def getMissing(self) -> cv2.typing.MatLike: ... | |
def getTrainSamples(self, layout: int = ..., compressSamples: bool = ..., compressVars: bool = ...) -> cv2.typing.MatLike: ... | |
def getTrainResponses(self) -> cv2.typing.MatLike: ... | |
def getTrainNormCatResponses(self) -> cv2.typing.MatLike: ... | |
def getTestResponses(self) -> cv2.typing.MatLike: ... | |
def getTestNormCatResponses(self) -> cv2.typing.MatLike: ... | |
def getResponses(self) -> cv2.typing.MatLike: ... | |
def getNormCatResponses(self) -> cv2.typing.MatLike: ... | |
def getSampleWeights(self) -> cv2.typing.MatLike: ... | |
def getTrainSampleWeights(self) -> cv2.typing.MatLike: ... | |
def getTestSampleWeights(self) -> cv2.typing.MatLike: ... | |
def getVarIdx(self) -> cv2.typing.MatLike: ... | |
def getVarType(self) -> cv2.typing.MatLike: ... | |
def getVarSymbolFlags(self) -> cv2.typing.MatLike: ... | |
def getResponseType(self) -> int: ... | |
def getTrainSampleIdx(self) -> cv2.typing.MatLike: ... | |
def getTestSampleIdx(self) -> cv2.typing.MatLike: ... | |
def getValues(self, vi: int, sidx: cv2.typing.MatLike, values: float) -> None: ... | |
def getValues(self, vi: int, sidx: cv2.UMat, values: float) -> None: ... | |
def getDefaultSubstValues(self) -> cv2.typing.MatLike: ... | |
def getCatCount(self, vi: int) -> int: ... | |
def getClassLabels(self) -> cv2.typing.MatLike: ... | |
def getCatOfs(self) -> cv2.typing.MatLike: ... | |
def getCatMap(self) -> cv2.typing.MatLike: ... | |
def setTrainTestSplit(self, count: int, shuffle: bool = ...) -> None: ... | |
def setTrainTestSplitRatio(self, ratio: float, shuffle: bool = ...) -> None: ... | |
def shuffleTrainTest(self) -> None: ... | |
def getTestSamples(self) -> cv2.typing.MatLike: ... | |
def getNames(self, names: typing.Sequence[str]) -> None: ... | |
def getSubVector(vec: cv2.typing.MatLike, idx: cv2.typing.MatLike) -> cv2.typing.MatLike: ... | |
def getSubMatrix(matrix: cv2.typing.MatLike, idx: cv2.typing.MatLike, layout: int) -> cv2.typing.MatLike: ... | |
def create(cls, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, varIdx: cv2.typing.MatLike | None = ..., sampleIdx: cv2.typing.MatLike | None = ..., sampleWeights: cv2.typing.MatLike | None = ..., varType: cv2.typing.MatLike | None = ...) -> TrainData: ... | |
def create(cls, samples: cv2.UMat, layout: int, responses: cv2.UMat, varIdx: cv2.UMat | None = ..., sampleIdx: cv2.UMat | None = ..., sampleWeights: cv2.UMat | None = ..., varType: cv2.UMat | None = ...) -> TrainData: ... | |
class StatModel(cv2.Algorithm): | |
# Functions | |
def getVarCount(self) -> int: ... | |
def empty(self) -> bool: ... | |
def isTrained(self) -> bool: ... | |
def isClassifier(self) -> bool: ... | |
def train(self, trainData: TrainData, flags: int = ...) -> bool: ... | |
def train(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike) -> bool: ... | |
def train(self, samples: cv2.UMat, layout: int, responses: cv2.UMat) -> bool: ... | |
def calcError(self, data: TrainData, test: bool, resp: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike]: ... | |
def calcError(self, data: TrainData, test: bool, resp: cv2.UMat | None = ...) -> tuple[float, cv2.UMat]: ... | |
def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ... | |
def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ... | |
class NormalBayesClassifier(StatModel): | |
# Functions | |
def predictProb(self, inputs: cv2.typing.MatLike, outputs: cv2.typing.MatLike | None = ..., outputProbs: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ... | |
def predictProb(self, inputs: cv2.UMat, outputs: cv2.UMat | None = ..., outputProbs: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ... | |
def create(cls) -> NormalBayesClassifier: ... | |
def load(cls, filepath: str, nodeName: str = ...) -> NormalBayesClassifier: ... | |
class KNearest(StatModel): | |
# Functions | |
def getDefaultK(self) -> int: ... | |
def setDefaultK(self, val: int) -> None: ... | |
def getIsClassifier(self) -> bool: ... | |
def setIsClassifier(self, val: bool) -> None: ... | |
def getEmax(self) -> int: ... | |
def setEmax(self, val: int) -> None: ... | |
def getAlgorithmType(self) -> int: ... | |
def setAlgorithmType(self, val: int) -> None: ... | |
def findNearest(self, samples: cv2.typing.MatLike, k: int, results: cv2.typing.MatLike | None = ..., neighborResponses: cv2.typing.MatLike | None = ..., dist: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ... | |
def findNearest(self, samples: cv2.UMat, k: int, results: cv2.UMat | None = ..., neighborResponses: cv2.UMat | None = ..., dist: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat, cv2.UMat]: ... | |
def create(cls) -> KNearest: ... | |
def load(cls, filepath: str) -> KNearest: ... | |
class SVM(StatModel): | |
# Functions | |
def getType(self) -> int: ... | |
def setType(self, val: int) -> None: ... | |
def getGamma(self) -> float: ... | |
def setGamma(self, val: float) -> None: ... | |
def getCoef0(self) -> float: ... | |
def setCoef0(self, val: float) -> None: ... | |
def getDegree(self) -> float: ... | |
def setDegree(self, val: float) -> None: ... | |
def getC(self) -> float: ... | |
def setC(self, val: float) -> None: ... | |
def getNu(self) -> float: ... | |
def setNu(self, val: float) -> None: ... | |
def getP(self) -> float: ... | |
def setP(self, val: float) -> None: ... | |
def getClassWeights(self) -> cv2.typing.MatLike: ... | |
def setClassWeights(self, val: cv2.typing.MatLike) -> None: ... | |
def getTermCriteria(self) -> cv2.typing.TermCriteria: ... | |
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... | |
def getKernelType(self) -> int: ... | |
def setKernel(self, kernelType: int) -> None: ... | |
def trainAuto(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ... | |
def trainAuto(self, samples: cv2.UMat, layout: int, responses: cv2.UMat, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ... | |
def getSupportVectors(self) -> cv2.typing.MatLike: ... | |
def getUncompressedSupportVectors(self) -> cv2.typing.MatLike: ... | |
def getDecisionFunction(self, i: int, alpha: cv2.typing.MatLike | None = ..., svidx: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ... | |
def getDecisionFunction(self, i: int, alpha: cv2.UMat | None = ..., svidx: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ... | |
def getDefaultGridPtr(param_id: int) -> ParamGrid: ... | |
def create(cls) -> SVM: ... | |
def load(cls, filepath: str) -> SVM: ... | |
class EM(StatModel): | |
# Functions | |
def getClustersNumber(self) -> int: ... | |
def setClustersNumber(self, val: int) -> None: ... | |
def getCovarianceMatrixType(self) -> int: ... | |
def setCovarianceMatrixType(self, val: int) -> None: ... | |
def getTermCriteria(self) -> cv2.typing.TermCriteria: ... | |
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... | |
def getWeights(self) -> cv2.typing.MatLike: ... | |
def getMeans(self) -> cv2.typing.MatLike: ... | |
def getCovs(self, covs: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ... | |
def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ... | |
def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ... | |
def predict2(self, sample: cv2.typing.MatLike, probs: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.Vec2d, cv2.typing.MatLike]: ... | |
def predict2(self, sample: cv2.UMat, probs: cv2.UMat | None = ...) -> tuple[cv2.typing.Vec2d, cv2.UMat]: ... | |
def trainEM(self, samples: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ... | |
def trainEM(self, samples: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ... | |
def trainE(self, samples: cv2.typing.MatLike, means0: cv2.typing.MatLike, covs0: cv2.typing.MatLike | None = ..., weights0: cv2.typing.MatLike | None = ..., logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ... | |
def trainE(self, samples: cv2.UMat, means0: cv2.UMat, covs0: cv2.UMat | None = ..., weights0: cv2.UMat | None = ..., logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ... | |
def trainM(self, samples: cv2.typing.MatLike, probs0: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ... | |
def trainM(self, samples: cv2.UMat, probs0: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ... | |
def create(cls) -> EM: ... | |
def load(cls, filepath: str, nodeName: str = ...) -> EM: ... | |
class DTrees(StatModel): | |
# Functions | |
def getMaxCategories(self) -> int: ... | |
def setMaxCategories(self, val: int) -> None: ... | |
def getMaxDepth(self) -> int: ... | |
def setMaxDepth(self, val: int) -> None: ... | |
def getMinSampleCount(self) -> int: ... | |
def setMinSampleCount(self, val: int) -> None: ... | |
def getCVFolds(self) -> int: ... | |
def setCVFolds(self, val: int) -> None: ... | |
def getUseSurrogates(self) -> bool: ... | |
def setUseSurrogates(self, val: bool) -> None: ... | |
def getUse1SERule(self) -> bool: ... | |
def setUse1SERule(self, val: bool) -> None: ... | |
def getTruncatePrunedTree(self) -> bool: ... | |
def setTruncatePrunedTree(self, val: bool) -> None: ... | |
def getRegressionAccuracy(self) -> float: ... | |
def setRegressionAccuracy(self, val: float) -> None: ... | |
def getPriors(self) -> cv2.typing.MatLike: ... | |
def setPriors(self, val: cv2.typing.MatLike) -> None: ... | |
def create(cls) -> DTrees: ... | |
def load(cls, filepath: str, nodeName: str = ...) -> DTrees: ... | |
class ANN_MLP(StatModel): | |
# Functions | |
def setTrainMethod(self, method: int, param1: float = ..., param2: float = ...) -> None: ... | |
def getTrainMethod(self) -> int: ... | |
def setActivationFunction(self, type: int, param1: float = ..., param2: float = ...) -> None: ... | |
def setLayerSizes(self, _layer_sizes: cv2.typing.MatLike) -> None: ... | |
def setLayerSizes(self, _layer_sizes: cv2.UMat) -> None: ... | |
def getLayerSizes(self) -> cv2.typing.MatLike: ... | |
def getTermCriteria(self) -> cv2.typing.TermCriteria: ... | |
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... | |
def getBackpropWeightScale(self) -> float: ... | |
def setBackpropWeightScale(self, val: float) -> None: ... | |
def getBackpropMomentumScale(self) -> float: ... | |
def setBackpropMomentumScale(self, val: float) -> None: ... | |
def getRpropDW0(self) -> float: ... | |
def setRpropDW0(self, val: float) -> None: ... | |
def getRpropDWPlus(self) -> float: ... | |
def setRpropDWPlus(self, val: float) -> None: ... | |
def getRpropDWMinus(self) -> float: ... | |
def setRpropDWMinus(self, val: float) -> None: ... | |
def getRpropDWMin(self) -> float: ... | |
def setRpropDWMin(self, val: float) -> None: ... | |
def getRpropDWMax(self) -> float: ... | |
def setRpropDWMax(self, val: float) -> None: ... | |
def getAnnealInitialT(self) -> float: ... | |
def setAnnealInitialT(self, val: float) -> None: ... | |
def getAnnealFinalT(self) -> float: ... | |
def setAnnealFinalT(self, val: float) -> None: ... | |
def getAnnealCoolingRatio(self) -> float: ... | |
def setAnnealCoolingRatio(self, val: float) -> None: ... | |
def getAnnealItePerStep(self) -> int: ... | |
def setAnnealItePerStep(self, val: int) -> None: ... | |
def getWeights(self, layerIdx: int) -> cv2.typing.MatLike: ... | |
def create(cls) -> ANN_MLP: ... | |
def load(cls, filepath: str) -> ANN_MLP: ... | |
class LogisticRegression(StatModel): | |
# Functions | |
def getLearningRate(self) -> float: ... | |
def setLearningRate(self, val: float) -> None: ... | |
def getIterations(self) -> int: ... | |
def setIterations(self, val: int) -> None: ... | |
def getRegularization(self) -> int: ... | |
def setRegularization(self, val: int) -> None: ... | |
def getTrainMethod(self) -> int: ... | |
def setTrainMethod(self, val: int) -> None: ... | |
def getMiniBatchSize(self) -> int: ... | |
def setMiniBatchSize(self, val: int) -> None: ... | |
def getTermCriteria(self) -> cv2.typing.TermCriteria: ... | |
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... | |
def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ... | |
def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ... | |
def get_learnt_thetas(self) -> cv2.typing.MatLike: ... | |
def create(cls) -> LogisticRegression: ... | |
def load(cls, filepath: str, nodeName: str = ...) -> LogisticRegression: ... | |
class SVMSGD(StatModel): | |
# Functions | |
def getWeights(self) -> cv2.typing.MatLike: ... | |
def getShift(self) -> float: ... | |
def create(cls) -> SVMSGD: ... | |
def load(cls, filepath: str, nodeName: str = ...) -> SVMSGD: ... | |
def setOptimalParameters(self, svmsgdType: int = ..., marginType: int = ...) -> None: ... | |
def getSvmsgdType(self) -> int: ... | |
def setSvmsgdType(self, svmsgdType: int) -> None: ... | |
def getMarginType(self) -> int: ... | |
def setMarginType(self, marginType: int) -> None: ... | |
def getMarginRegularization(self) -> float: ... | |
def setMarginRegularization(self, marginRegularization: float) -> None: ... | |
def getInitialStepSize(self) -> float: ... | |
def setInitialStepSize(self, InitialStepSize: float) -> None: ... | |
def getStepDecreasingPower(self) -> float: ... | |
def setStepDecreasingPower(self, stepDecreasingPower: float) -> None: ... | |
def getTermCriteria(self) -> cv2.typing.TermCriteria: ... | |
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... | |
class RTrees(DTrees): | |
# Functions | |
def getCalculateVarImportance(self) -> bool: ... | |
def setCalculateVarImportance(self, val: bool) -> None: ... | |
def getActiveVarCount(self) -> int: ... | |
def setActiveVarCount(self, val: int) -> None: ... | |
def getTermCriteria(self) -> cv2.typing.TermCriteria: ... | |
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... | |
def getVarImportance(self) -> cv2.typing.MatLike: ... | |
def getVotes(self, samples: cv2.typing.MatLike, flags: int, results: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ... | |
def getVotes(self, samples: cv2.UMat, flags: int, results: cv2.UMat | None = ...) -> cv2.UMat: ... | |
def getOOBError(self) -> float: ... | |
def create(cls) -> RTrees: ... | |
def load(cls, filepath: str, nodeName: str = ...) -> RTrees: ... | |
class Boost(DTrees): | |
# Functions | |
def getBoostType(self) -> int: ... | |
def setBoostType(self, val: int) -> None: ... | |
def getWeakCount(self) -> int: ... | |
def setWeakCount(self, val: int) -> None: ... | |
def getWeightTrimRate(self) -> float: ... | |
def setWeightTrimRate(self, val: float) -> None: ... | |
def create(cls) -> Boost: ... | |
def load(cls, filepath: str, nodeName: str = ...) -> Boost: ... | |