Spaces:
No application file
No application file
File size: 22,727 Bytes
ba8d952 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
import cv2
import cv2.typing
import typing
# Enumerations
VAR_NUMERICAL: int
VAR_ORDERED: int
VAR_CATEGORICAL: int
VariableTypes = int
"""One of [VAR_NUMERICAL, VAR_ORDERED, VAR_CATEGORICAL]"""
TEST_ERROR: int
TRAIN_ERROR: int
ErrorTypes = int
"""One of [TEST_ERROR, TRAIN_ERROR]"""
ROW_SAMPLE: int
COL_SAMPLE: int
SampleTypes = int
"""One of [ROW_SAMPLE, COL_SAMPLE]"""
StatModel_UPDATE_MODEL: int
STAT_MODEL_UPDATE_MODEL: int
StatModel_RAW_OUTPUT: int
STAT_MODEL_RAW_OUTPUT: int
StatModel_COMPRESSED_INPUT: int
STAT_MODEL_COMPRESSED_INPUT: int
StatModel_PREPROCESSED_INPUT: int
STAT_MODEL_PREPROCESSED_INPUT: int
StatModel_Flags = int
"""One of [StatModel_UPDATE_MODEL, STAT_MODEL_UPDATE_MODEL, StatModel_RAW_OUTPUT, STAT_MODEL_RAW_OUTPUT, StatModel_COMPRESSED_INPUT, STAT_MODEL_COMPRESSED_INPUT, StatModel_PREPROCESSED_INPUT, STAT_MODEL_PREPROCESSED_INPUT]"""
KNearest_BRUTE_FORCE: int
KNEAREST_BRUTE_FORCE: int
KNearest_KDTREE: int
KNEAREST_KDTREE: int
KNearest_Types = int
"""One of [KNearest_BRUTE_FORCE, KNEAREST_BRUTE_FORCE, KNearest_KDTREE, KNEAREST_KDTREE]"""
SVM_C_SVC: int
SVM_NU_SVC: int
SVM_ONE_CLASS: int
SVM_EPS_SVR: int
SVM_NU_SVR: int
SVM_Types = int
"""One of [SVM_C_SVC, SVM_NU_SVC, SVM_ONE_CLASS, SVM_EPS_SVR, SVM_NU_SVR]"""
SVM_CUSTOM: int
SVM_LINEAR: int
SVM_POLY: int
SVM_RBF: int
SVM_SIGMOID: int
SVM_CHI2: int
SVM_INTER: int
SVM_KernelTypes = int
"""One of [SVM_CUSTOM, SVM_LINEAR, SVM_POLY, SVM_RBF, SVM_SIGMOID, SVM_CHI2, SVM_INTER]"""
SVM_C: int
SVM_GAMMA: int
SVM_P: int
SVM_NU: int
SVM_COEF: int
SVM_DEGREE: int
SVM_ParamTypes = int
"""One of [SVM_C, SVM_GAMMA, SVM_P, SVM_NU, SVM_COEF, SVM_DEGREE]"""
EM_COV_MAT_SPHERICAL: int
EM_COV_MAT_DIAGONAL: int
EM_COV_MAT_GENERIC: int
EM_COV_MAT_DEFAULT: int
EM_Types = int
"""One of [EM_COV_MAT_SPHERICAL, EM_COV_MAT_DIAGONAL, EM_COV_MAT_GENERIC, EM_COV_MAT_DEFAULT]"""
EM_DEFAULT_NCLUSTERS: int
EM_DEFAULT_MAX_ITERS: int
EM_START_E_STEP: int
EM_START_M_STEP: int
EM_START_AUTO_STEP: int
DTrees_PREDICT_AUTO: int
DTREES_PREDICT_AUTO: int
DTrees_PREDICT_SUM: int
DTREES_PREDICT_SUM: int
DTrees_PREDICT_MAX_VOTE: int
DTREES_PREDICT_MAX_VOTE: int
DTrees_PREDICT_MASK: int
DTREES_PREDICT_MASK: int
DTrees_Flags = int
"""One of [DTrees_PREDICT_AUTO, DTREES_PREDICT_AUTO, DTrees_PREDICT_SUM, DTREES_PREDICT_SUM, DTrees_PREDICT_MAX_VOTE, DTREES_PREDICT_MAX_VOTE, DTrees_PREDICT_MASK, DTREES_PREDICT_MASK]"""
Boost_DISCRETE: int
BOOST_DISCRETE: int
Boost_REAL: int
BOOST_REAL: int
Boost_LOGIT: int
BOOST_LOGIT: int
Boost_GENTLE: int
BOOST_GENTLE: int
Boost_Types = int
"""One of [Boost_DISCRETE, BOOST_DISCRETE, Boost_REAL, BOOST_REAL, Boost_LOGIT, BOOST_LOGIT, Boost_GENTLE, BOOST_GENTLE]"""
ANN_MLP_BACKPROP: int
ANN_MLP_RPROP: int
ANN_MLP_ANNEAL: int
ANN_MLP_TrainingMethods = int
"""One of [ANN_MLP_BACKPROP, ANN_MLP_RPROP, ANN_MLP_ANNEAL]"""
ANN_MLP_IDENTITY: int
ANN_MLP_SIGMOID_SYM: int
ANN_MLP_GAUSSIAN: int
ANN_MLP_RELU: int
ANN_MLP_LEAKYRELU: int
ANN_MLP_ActivationFunctions = int
"""One of [ANN_MLP_IDENTITY, ANN_MLP_SIGMOID_SYM, ANN_MLP_GAUSSIAN, ANN_MLP_RELU, ANN_MLP_LEAKYRELU]"""
ANN_MLP_UPDATE_WEIGHTS: int
ANN_MLP_NO_INPUT_SCALE: int
ANN_MLP_NO_OUTPUT_SCALE: int
ANN_MLP_TrainFlags = int
"""One of [ANN_MLP_UPDATE_WEIGHTS, ANN_MLP_NO_INPUT_SCALE, ANN_MLP_NO_OUTPUT_SCALE]"""
LogisticRegression_REG_DISABLE: int
LOGISTIC_REGRESSION_REG_DISABLE: int
LogisticRegression_REG_L1: int
LOGISTIC_REGRESSION_REG_L1: int
LogisticRegression_REG_L2: int
LOGISTIC_REGRESSION_REG_L2: int
LogisticRegression_RegKinds = int
"""One of [LogisticRegression_REG_DISABLE, LOGISTIC_REGRESSION_REG_DISABLE, LogisticRegression_REG_L1, LOGISTIC_REGRESSION_REG_L1, LogisticRegression_REG_L2, LOGISTIC_REGRESSION_REG_L2]"""
LogisticRegression_BATCH: int
LOGISTIC_REGRESSION_BATCH: int
LogisticRegression_MINI_BATCH: int
LOGISTIC_REGRESSION_MINI_BATCH: int
LogisticRegression_Methods = int
"""One of [LogisticRegression_BATCH, LOGISTIC_REGRESSION_BATCH, LogisticRegression_MINI_BATCH, LOGISTIC_REGRESSION_MINI_BATCH]"""
SVMSGD_SGD: int
SVMSGD_ASGD: int
SVMSGD_SvmsgdType = int
"""One of [SVMSGD_SGD, SVMSGD_ASGD]"""
SVMSGD_SOFT_MARGIN: int
SVMSGD_HARD_MARGIN: int
SVMSGD_MarginType = int
"""One of [SVMSGD_SOFT_MARGIN, SVMSGD_HARD_MARGIN]"""
# Classes
class ParamGrid:
minVal: float
maxVal: float
logStep: float
# Functions
@classmethod
def create(cls, minVal: float = ..., maxVal: float = ..., logstep: float = ...) -> ParamGrid: ...
class TrainData:
# Functions
def getLayout(self) -> int: ...
def getNTrainSamples(self) -> int: ...
def getNTestSamples(self) -> int: ...
def getNSamples(self) -> int: ...
def getNVars(self) -> int: ...
def getNAllVars(self) -> int: ...
@typing.overload
def getSample(self, varIdx: cv2.typing.MatLike, sidx: int, buf: float) -> None: ...
@typing.overload
def getSample(self, varIdx: cv2.UMat, sidx: int, buf: float) -> None: ...
def getSamples(self) -> cv2.typing.MatLike: ...
def getMissing(self) -> cv2.typing.MatLike: ...
def getTrainSamples(self, layout: int = ..., compressSamples: bool = ..., compressVars: bool = ...) -> cv2.typing.MatLike: ...
def getTrainResponses(self) -> cv2.typing.MatLike: ...
def getTrainNormCatResponses(self) -> cv2.typing.MatLike: ...
def getTestResponses(self) -> cv2.typing.MatLike: ...
def getTestNormCatResponses(self) -> cv2.typing.MatLike: ...
def getResponses(self) -> cv2.typing.MatLike: ...
def getNormCatResponses(self) -> cv2.typing.MatLike: ...
def getSampleWeights(self) -> cv2.typing.MatLike: ...
def getTrainSampleWeights(self) -> cv2.typing.MatLike: ...
def getTestSampleWeights(self) -> cv2.typing.MatLike: ...
def getVarIdx(self) -> cv2.typing.MatLike: ...
def getVarType(self) -> cv2.typing.MatLike: ...
def getVarSymbolFlags(self) -> cv2.typing.MatLike: ...
def getResponseType(self) -> int: ...
def getTrainSampleIdx(self) -> cv2.typing.MatLike: ...
def getTestSampleIdx(self) -> cv2.typing.MatLike: ...
@typing.overload
def getValues(self, vi: int, sidx: cv2.typing.MatLike, values: float) -> None: ...
@typing.overload
def getValues(self, vi: int, sidx: cv2.UMat, values: float) -> None: ...
def getDefaultSubstValues(self) -> cv2.typing.MatLike: ...
def getCatCount(self, vi: int) -> int: ...
def getClassLabels(self) -> cv2.typing.MatLike: ...
def getCatOfs(self) -> cv2.typing.MatLike: ...
def getCatMap(self) -> cv2.typing.MatLike: ...
def setTrainTestSplit(self, count: int, shuffle: bool = ...) -> None: ...
def setTrainTestSplitRatio(self, ratio: float, shuffle: bool = ...) -> None: ...
def shuffleTrainTest(self) -> None: ...
def getTestSamples(self) -> cv2.typing.MatLike: ...
def getNames(self, names: typing.Sequence[str]) -> None: ...
@staticmethod
def getSubVector(vec: cv2.typing.MatLike, idx: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
@staticmethod
def getSubMatrix(matrix: cv2.typing.MatLike, idx: cv2.typing.MatLike, layout: int) -> cv2.typing.MatLike: ...
@classmethod
@typing.overload
def create(cls, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, varIdx: cv2.typing.MatLike | None = ..., sampleIdx: cv2.typing.MatLike | None = ..., sampleWeights: cv2.typing.MatLike | None = ..., varType: cv2.typing.MatLike | None = ...) -> TrainData: ...
@classmethod
@typing.overload
def create(cls, samples: cv2.UMat, layout: int, responses: cv2.UMat, varIdx: cv2.UMat | None = ..., sampleIdx: cv2.UMat | None = ..., sampleWeights: cv2.UMat | None = ..., varType: cv2.UMat | None = ...) -> TrainData: ...
class StatModel(cv2.Algorithm):
# Functions
def getVarCount(self) -> int: ...
def empty(self) -> bool: ...
def isTrained(self) -> bool: ...
def isClassifier(self) -> bool: ...
@typing.overload
def train(self, trainData: TrainData, flags: int = ...) -> bool: ...
@typing.overload
def train(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike) -> bool: ...
@typing.overload
def train(self, samples: cv2.UMat, layout: int, responses: cv2.UMat) -> bool: ...
@typing.overload
def calcError(self, data: TrainData, test: bool, resp: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike]: ...
@typing.overload
def calcError(self, data: TrainData, test: bool, resp: cv2.UMat | None = ...) -> tuple[float, cv2.UMat]: ...
@typing.overload
def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
@typing.overload
def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
class NormalBayesClassifier(StatModel):
# Functions
@typing.overload
def predictProb(self, inputs: cv2.typing.MatLike, outputs: cv2.typing.MatLike | None = ..., outputProbs: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ...
@typing.overload
def predictProb(self, inputs: cv2.UMat, outputs: cv2.UMat | None = ..., outputProbs: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ...
@classmethod
def create(cls) -> NormalBayesClassifier: ...
@classmethod
def load(cls, filepath: str, nodeName: str = ...) -> NormalBayesClassifier: ...
class KNearest(StatModel):
# Functions
def getDefaultK(self) -> int: ...
def setDefaultK(self, val: int) -> None: ...
def getIsClassifier(self) -> bool: ...
def setIsClassifier(self, val: bool) -> None: ...
def getEmax(self) -> int: ...
def setEmax(self, val: int) -> None: ...
def getAlgorithmType(self) -> int: ...
def setAlgorithmType(self, val: int) -> None: ...
@typing.overload
def findNearest(self, samples: cv2.typing.MatLike, k: int, results: cv2.typing.MatLike | None = ..., neighborResponses: cv2.typing.MatLike | None = ..., dist: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
@typing.overload
def findNearest(self, samples: cv2.UMat, k: int, results: cv2.UMat | None = ..., neighborResponses: cv2.UMat | None = ..., dist: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat, cv2.UMat]: ...
@classmethod
def create(cls) -> KNearest: ...
@classmethod
def load(cls, filepath: str) -> KNearest: ...
class SVM(StatModel):
# Functions
def getType(self) -> int: ...
def setType(self, val: int) -> None: ...
def getGamma(self) -> float: ...
def setGamma(self, val: float) -> None: ...
def getCoef0(self) -> float: ...
def setCoef0(self, val: float) -> None: ...
def getDegree(self) -> float: ...
def setDegree(self, val: float) -> None: ...
def getC(self) -> float: ...
def setC(self, val: float) -> None: ...
def getNu(self) -> float: ...
def setNu(self, val: float) -> None: ...
def getP(self) -> float: ...
def setP(self, val: float) -> None: ...
def getClassWeights(self) -> cv2.typing.MatLike: ...
def setClassWeights(self, val: cv2.typing.MatLike) -> None: ...
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
def getKernelType(self) -> int: ...
def setKernel(self, kernelType: int) -> None: ...
@typing.overload
def trainAuto(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ...
@typing.overload
def trainAuto(self, samples: cv2.UMat, layout: int, responses: cv2.UMat, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ...
def getSupportVectors(self) -> cv2.typing.MatLike: ...
def getUncompressedSupportVectors(self) -> cv2.typing.MatLike: ...
@typing.overload
def getDecisionFunction(self, i: int, alpha: cv2.typing.MatLike | None = ..., svidx: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ...
@typing.overload
def getDecisionFunction(self, i: int, alpha: cv2.UMat | None = ..., svidx: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ...
@staticmethod
def getDefaultGridPtr(param_id: int) -> ParamGrid: ...
@classmethod
def create(cls) -> SVM: ...
@classmethod
def load(cls, filepath: str) -> SVM: ...
class EM(StatModel):
# Functions
def getClustersNumber(self) -> int: ...
def setClustersNumber(self, val: int) -> None: ...
def getCovarianceMatrixType(self) -> int: ...
def setCovarianceMatrixType(self, val: int) -> None: ...
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
def getWeights(self) -> cv2.typing.MatLike: ...
def getMeans(self) -> cv2.typing.MatLike: ...
def getCovs(self, covs: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ...
@typing.overload
def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
@typing.overload
def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
@typing.overload
def predict2(self, sample: cv2.typing.MatLike, probs: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.Vec2d, cv2.typing.MatLike]: ...
@typing.overload
def predict2(self, sample: cv2.UMat, probs: cv2.UMat | None = ...) -> tuple[cv2.typing.Vec2d, cv2.UMat]: ...
@typing.overload
def trainEM(self, samples: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
@typing.overload
def trainEM(self, samples: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
@typing.overload
def trainE(self, samples: cv2.typing.MatLike, means0: cv2.typing.MatLike, covs0: cv2.typing.MatLike | None = ..., weights0: cv2.typing.MatLike | None = ..., logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
@typing.overload
def trainE(self, samples: cv2.UMat, means0: cv2.UMat, covs0: cv2.UMat | None = ..., weights0: cv2.UMat | None = ..., logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
@typing.overload
def trainM(self, samples: cv2.typing.MatLike, probs0: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
@typing.overload
def trainM(self, samples: cv2.UMat, probs0: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
@classmethod
def create(cls) -> EM: ...
@classmethod
def load(cls, filepath: str, nodeName: str = ...) -> EM: ...
class DTrees(StatModel):
# Functions
def getMaxCategories(self) -> int: ...
def setMaxCategories(self, val: int) -> None: ...
def getMaxDepth(self) -> int: ...
def setMaxDepth(self, val: int) -> None: ...
def getMinSampleCount(self) -> int: ...
def setMinSampleCount(self, val: int) -> None: ...
def getCVFolds(self) -> int: ...
def setCVFolds(self, val: int) -> None: ...
def getUseSurrogates(self) -> bool: ...
def setUseSurrogates(self, val: bool) -> None: ...
def getUse1SERule(self) -> bool: ...
def setUse1SERule(self, val: bool) -> None: ...
def getTruncatePrunedTree(self) -> bool: ...
def setTruncatePrunedTree(self, val: bool) -> None: ...
def getRegressionAccuracy(self) -> float: ...
def setRegressionAccuracy(self, val: float) -> None: ...
def getPriors(self) -> cv2.typing.MatLike: ...
def setPriors(self, val: cv2.typing.MatLike) -> None: ...
@classmethod
def create(cls) -> DTrees: ...
@classmethod
def load(cls, filepath: str, nodeName: str = ...) -> DTrees: ...
class ANN_MLP(StatModel):
# Functions
def setTrainMethod(self, method: int, param1: float = ..., param2: float = ...) -> None: ...
def getTrainMethod(self) -> int: ...
def setActivationFunction(self, type: int, param1: float = ..., param2: float = ...) -> None: ...
@typing.overload
def setLayerSizes(self, _layer_sizes: cv2.typing.MatLike) -> None: ...
@typing.overload
def setLayerSizes(self, _layer_sizes: cv2.UMat) -> None: ...
def getLayerSizes(self) -> cv2.typing.MatLike: ...
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
def getBackpropWeightScale(self) -> float: ...
def setBackpropWeightScale(self, val: float) -> None: ...
def getBackpropMomentumScale(self) -> float: ...
def setBackpropMomentumScale(self, val: float) -> None: ...
def getRpropDW0(self) -> float: ...
def setRpropDW0(self, val: float) -> None: ...
def getRpropDWPlus(self) -> float: ...
def setRpropDWPlus(self, val: float) -> None: ...
def getRpropDWMinus(self) -> float: ...
def setRpropDWMinus(self, val: float) -> None: ...
def getRpropDWMin(self) -> float: ...
def setRpropDWMin(self, val: float) -> None: ...
def getRpropDWMax(self) -> float: ...
def setRpropDWMax(self, val: float) -> None: ...
def getAnnealInitialT(self) -> float: ...
def setAnnealInitialT(self, val: float) -> None: ...
def getAnnealFinalT(self) -> float: ...
def setAnnealFinalT(self, val: float) -> None: ...
def getAnnealCoolingRatio(self) -> float: ...
def setAnnealCoolingRatio(self, val: float) -> None: ...
def getAnnealItePerStep(self) -> int: ...
def setAnnealItePerStep(self, val: int) -> None: ...
def getWeights(self, layerIdx: int) -> cv2.typing.MatLike: ...
@classmethod
def create(cls) -> ANN_MLP: ...
@classmethod
def load(cls, filepath: str) -> ANN_MLP: ...
class LogisticRegression(StatModel):
# Functions
def getLearningRate(self) -> float: ...
def setLearningRate(self, val: float) -> None: ...
def getIterations(self) -> int: ...
def setIterations(self, val: int) -> None: ...
def getRegularization(self) -> int: ...
def setRegularization(self, val: int) -> None: ...
def getTrainMethod(self) -> int: ...
def setTrainMethod(self, val: int) -> None: ...
def getMiniBatchSize(self) -> int: ...
def setMiniBatchSize(self, val: int) -> None: ...
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
@typing.overload
def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
@typing.overload
def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
def get_learnt_thetas(self) -> cv2.typing.MatLike: ...
@classmethod
def create(cls) -> LogisticRegression: ...
@classmethod
def load(cls, filepath: str, nodeName: str = ...) -> LogisticRegression: ...
class SVMSGD(StatModel):
# Functions
def getWeights(self) -> cv2.typing.MatLike: ...
def getShift(self) -> float: ...
@classmethod
def create(cls) -> SVMSGD: ...
@classmethod
def load(cls, filepath: str, nodeName: str = ...) -> SVMSGD: ...
def setOptimalParameters(self, svmsgdType: int = ..., marginType: int = ...) -> None: ...
def getSvmsgdType(self) -> int: ...
def setSvmsgdType(self, svmsgdType: int) -> None: ...
def getMarginType(self) -> int: ...
def setMarginType(self, marginType: int) -> None: ...
def getMarginRegularization(self) -> float: ...
def setMarginRegularization(self, marginRegularization: float) -> None: ...
def getInitialStepSize(self) -> float: ...
def setInitialStepSize(self, InitialStepSize: float) -> None: ...
def getStepDecreasingPower(self) -> float: ...
def setStepDecreasingPower(self, stepDecreasingPower: float) -> None: ...
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
class RTrees(DTrees):
# Functions
def getCalculateVarImportance(self) -> bool: ...
def setCalculateVarImportance(self, val: bool) -> None: ...
def getActiveVarCount(self) -> int: ...
def setActiveVarCount(self, val: int) -> None: ...
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
def getVarImportance(self) -> cv2.typing.MatLike: ...
@typing.overload
def getVotes(self, samples: cv2.typing.MatLike, flags: int, results: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
@typing.overload
def getVotes(self, samples: cv2.UMat, flags: int, results: cv2.UMat | None = ...) -> cv2.UMat: ...
def getOOBError(self) -> float: ...
@classmethod
def create(cls) -> RTrees: ...
@classmethod
def load(cls, filepath: str, nodeName: str = ...) -> RTrees: ...
class Boost(DTrees):
# Functions
def getBoostType(self) -> int: ...
def setBoostType(self, val: int) -> None: ...
def getWeakCount(self) -> int: ...
def setWeakCount(self, val: int) -> None: ...
def getWeightTrimRate(self) -> float: ...
def setWeightTrimRate(self, val: float) -> None: ...
@classmethod
def create(cls) -> Boost: ...
@classmethod
def load(cls, filepath: str, nodeName: str = ...) -> Boost: ...
|