Spaces:
Runtime error
Runtime error
jens
commited on
Commit
·
2eca80e
1
Parent(s):
025dcd6
simple UI
Browse files
app.py
CHANGED
@@ -5,23 +5,37 @@ from inference import DepthPredictor, SegmentPredictor
|
|
5 |
from utils import create_3d_obj, create_3d_pc, point_cloud
|
6 |
import numpy as np
|
7 |
|
8 |
-
|
9 |
-
def snap(image, video):
|
10 |
depth_predictor = DepthPredictor()
|
11 |
depth_result = depth_predictor.predict(image)
|
12 |
-
|
13 |
-
|
|
|
14 |
segment_predictor = SegmentPredictor()
|
15 |
sam_result = segment_predictor.predict(image)
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
21 |
demo = gr.Interface(
|
22 |
snap,
|
23 |
inputs=[gr.Image(source="webcam", tool=None, label="Input Image", type="pil"),
|
24 |
-
|
|
|
25 |
outputs=[gr.Image(label="RGB"),
|
26 |
gr.Image(label="predicted depth"),
|
27 |
gr.Image(label="predicted segmentation"),
|
|
|
5 |
from utils import create_3d_obj, create_3d_pc, point_cloud
|
6 |
import numpy as np
|
7 |
|
8 |
+
def produce_depth_map(image):
|
|
|
9 |
depth_predictor = DepthPredictor()
|
10 |
depth_result = depth_predictor.predict(image)
|
11 |
+
return depth_result
|
12 |
+
|
13 |
+
def produce_segmentation_map(image):
|
14 |
segment_predictor = SegmentPredictor()
|
15 |
sam_result = segment_predictor.predict(image)
|
16 |
+
return sam_result
|
17 |
+
|
18 |
+
def produce_3d_reconstruction(image):
|
19 |
+
depth_predictor = DepthPredictor()
|
20 |
+
depth_result = depth_predictor.predict(image)
|
21 |
+
rgb_gltf_path = create_3d_obj(np.array(image), depth_result, path='./rgb.gltf')
|
22 |
+
return rgb_gltf_path
|
23 |
|
24 |
+
def produce_point_cloud(depth_map, segmentation_map):
|
25 |
+
return point_cloud(np.array(segmentation_map), depth_map)
|
26 |
|
27 |
+
def snap(image, depth_map, segmentation_map):
|
28 |
+
depth_result = produce_depth_map(image) if depth_map else None
|
29 |
+
sam_result = produce_segmentation_map(image) if segmentation_map else None
|
30 |
+
rgb_gltf_path = produce_3d_reconstruction(image) if depth_map else None
|
31 |
+
point_cloud_fig = produce_point_cloud(depth_result, sam_result) if (segmentation_map and depth_map) else None
|
32 |
|
33 |
+
return [image, depth_result, sam_result, rgb_gltf_path, point_cloud_fig]
|
34 |
demo = gr.Interface(
|
35 |
snap,
|
36 |
inputs=[gr.Image(source="webcam", tool=None, label="Input Image", type="pil"),
|
37 |
+
"checkbox",
|
38 |
+
"checkbox"],
|
39 |
outputs=[gr.Image(label="RGB"),
|
40 |
gr.Image(label="predicted depth"),
|
41 |
gr.Image(label="predicted segmentation"),
|