Spaces:
Runtime error
Runtime error
jens
commited on
Commit
·
025dcd6
1
Parent(s):
371a984
Basic layout
Browse files
app.py
CHANGED
@@ -5,55 +5,29 @@ from inference import DepthPredictor, SegmentPredictor
|
|
5 |
from utils import create_3d_obj, create_3d_pc, point_cloud
|
6 |
import numpy as np
|
7 |
|
8 |
-
def produce_depth_map(image):
|
9 |
-
depth_predictor = DepthPredictor()
|
10 |
-
depth_result = depth_predictor.predict(image)
|
11 |
-
return depth_result
|
12 |
-
|
13 |
-
def produce_segmentation_map(image):
|
14 |
-
segment_predictor = SegmentPredictor()
|
15 |
-
sam_result = segment_predictor.predict(image)
|
16 |
-
return sam_result
|
17 |
|
18 |
-
def
|
19 |
depth_predictor = DepthPredictor()
|
20 |
depth_result = depth_predictor.predict(image)
|
21 |
rgb_gltf_path = create_3d_obj(np.array(image), depth_result, path='./rgb.gltf')
|
22 |
-
return rgb_gltf_path
|
23 |
-
|
24 |
-
def produce_point_cloud(depth_map, segmentation_map):
|
25 |
-
return point_cloud(np.array(segmentation_map), depth_map)
|
26 |
-
|
27 |
-
def snap(image, depth_map, segmentation_map, video):
|
28 |
-
depth_result = produce_depth_map(image) if depth_map else None
|
29 |
-
sam_result = produce_segmentation_map(image) if segmentation_map else None
|
30 |
-
rgb_gltf_path = produce_3d_reconstruction(image) if depth_map else None
|
31 |
-
point_cloud_fig = produce_point_cloud(depth_result, sam_result) if segmentation_map else None
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
return [image, depth_result, sam_result, rgb_gltf_path, point_cloud_fig]
|
38 |
|
39 |
-
#
|
40 |
-
image_input = gr.Image(source="webcam", tool=None, label="Input Image", type="pil")
|
41 |
-
depth_map_button = gr.Button(label="Produce Depth Map", value=False)
|
42 |
-
segmentation_map_button = gr.Button(label="Produce Segmentation Map", value=False)
|
43 |
-
video_input = gr.Video(source="webcam")
|
44 |
|
45 |
-
# Interface outputs
|
46 |
-
output_image = gr.Image(label="RGB")
|
47 |
-
output_depth_map = gr.Image(label="Predicted Depth")
|
48 |
-
output_segmentation_map = gr.Image(label="Predicted Segmentation")
|
49 |
-
output_3d_reconstruction = gr.Model3D(label="3D mesh reconstruction - RGB", clear_color=[1.0, 1.0, 1.0, 1.0])
|
50 |
-
output_point_cloud = gr.Plot(label="Point Cloud")
|
51 |
|
52 |
-
# Interface
|
53 |
demo = gr.Interface(
|
54 |
snap,
|
55 |
-
inputs=[
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
)
|
58 |
|
59 |
if __name__ == "__main__":
|
|
|
5 |
from utils import create_3d_obj, create_3d_pc, point_cloud
|
6 |
import numpy as np
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
def snap(image, video):
|
10 |
depth_predictor = DepthPredictor()
|
11 |
depth_result = depth_predictor.predict(image)
|
12 |
rgb_gltf_path = create_3d_obj(np.array(image), depth_result, path='./rgb.gltf')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
segment_predictor = SegmentPredictor()
|
15 |
+
sam_result = segment_predictor.predict(image)
|
16 |
+
fig = point_cloud(np.array(sam_result), depth_result)
|
|
|
|
|
17 |
|
18 |
+
return [image, depth_result, sam_result, rgb_gltf_path, fig]#[depth_result, gltf_path, gltf_path]
|
|
|
|
|
|
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
21 |
demo = gr.Interface(
|
22 |
snap,
|
23 |
+
inputs=[gr.Image(source="webcam", tool=None, label="Input Image", type="pil"),
|
24 |
+
gr.Video(source="webcam")],
|
25 |
+
outputs=[gr.Image(label="RGB"),
|
26 |
+
gr.Image(label="predicted depth"),
|
27 |
+
gr.Image(label="predicted segmentation"),
|
28 |
+
gr.Model3D(label="3D mesh reconstruction - RGB",
|
29 |
+
clear_color=[1.0, 1.0, 1.0, 1.0]),
|
30 |
+
gr.Plot()]
|
31 |
)
|
32 |
|
33 |
if __name__ == "__main__":
|