jens
UI update
aeca07b
raw
history blame
1.73 kB
import gradio as gr
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
import supervision as sv
from inference import DepthPredictor, SegmentPredictor
from utils import create_3d_obj, create_3d_pc, point_cloud
import numpy as np
def produce_depth_map(image):
depth_predictor = DepthPredictor()
depth_result = depth_predictor.predict(image)
return depth_result
def produce_segmentation_map(image):
segment_predictor = SegmentPredictor()
sam_result = segment_predictor.predict(image)
return sam_result
def produce_3d_reconstruction(image):
depth_predictor = DepthPredictor()
depth_result = depth_predictor.predict(image)
rgb_gltf_path = create_3d_obj(np.array(image), depth_result, path='./rgb.gltf')
return rgb_gltf_path
def produce_point_cloud(depth_map, segmentation_map):
return point_cloud(np.array(segmentation_map), depth_map)
def snap(image, video):
depth_result = produce_depth_map(image)
sam_result = produce_segmentation_map(image)
rgb_gltf_path = produce_3d_reconstruction(image)
point_cloud_fig = produce_point_cloud(depth_result, sam_result)
return [image, depth_result, sam_result, rgb_gltf_path, point_cloud_fig]
demo = gr.Interface(
snap,
inputs=[gr.Image(source="webcam", tool=None, label="Input Image", type="pil"),
gr.Video(source="webcam")],
outputs=[gr.Image(label="RGB"),
gr.Image(label="predicted depth"),
gr.Image(label="predicted segmentation"),
gr.Model3D(label="3D mesh reconstruction - RGB",
clear_color=[1.0, 1.0, 1.0, 1.0]),
gr.Plot(label="Point Cloud")]
)
if __name__ == "__main__":
demo.launch()