Spaces:
Runtime error
Runtime error
jens
commited on
Commit
·
aeca07b
1
Parent(s):
4b43677
UI update
Browse files
app.py
CHANGED
@@ -5,18 +5,32 @@ from inference import DepthPredictor, SegmentPredictor
|
|
5 |
from utils import create_3d_obj, create_3d_pc, point_cloud
|
6 |
import numpy as np
|
7 |
|
8 |
-
|
9 |
-
def snap(image, video):
|
10 |
depth_predictor = DepthPredictor()
|
11 |
depth_result = depth_predictor.predict(image)
|
12 |
-
|
13 |
-
|
|
|
14 |
segment_predictor = SegmentPredictor()
|
15 |
sam_result = segment_predictor.predict(image)
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
20 |
|
21 |
demo = gr.Interface(
|
22 |
snap,
|
@@ -27,7 +41,7 @@ demo = gr.Interface(
|
|
27 |
gr.Image(label="predicted segmentation"),
|
28 |
gr.Model3D(label="3D mesh reconstruction - RGB",
|
29 |
clear_color=[1.0, 1.0, 1.0, 1.0]),
|
30 |
-
gr.Plot()]
|
31 |
)
|
32 |
|
33 |
if __name__ == "__main__":
|
|
|
5 |
from utils import create_3d_obj, create_3d_pc, point_cloud
|
6 |
import numpy as np
|
7 |
|
8 |
+
def produce_depth_map(image):
|
|
|
9 |
depth_predictor = DepthPredictor()
|
10 |
depth_result = depth_predictor.predict(image)
|
11 |
+
return depth_result
|
12 |
+
|
13 |
+
def produce_segmentation_map(image):
|
14 |
segment_predictor = SegmentPredictor()
|
15 |
sam_result = segment_predictor.predict(image)
|
16 |
+
return sam_result
|
17 |
+
|
18 |
+
def produce_3d_reconstruction(image):
|
19 |
+
depth_predictor = DepthPredictor()
|
20 |
+
depth_result = depth_predictor.predict(image)
|
21 |
+
rgb_gltf_path = create_3d_obj(np.array(image), depth_result, path='./rgb.gltf')
|
22 |
+
return rgb_gltf_path
|
23 |
|
24 |
+
def produce_point_cloud(depth_map, segmentation_map):
|
25 |
+
return point_cloud(np.array(segmentation_map), depth_map)
|
26 |
+
|
27 |
+
def snap(image, video):
|
28 |
+
depth_result = produce_depth_map(image)
|
29 |
+
sam_result = produce_segmentation_map(image)
|
30 |
+
rgb_gltf_path = produce_3d_reconstruction(image)
|
31 |
+
point_cloud_fig = produce_point_cloud(depth_result, sam_result)
|
32 |
|
33 |
+
return [image, depth_result, sam_result, rgb_gltf_path, point_cloud_fig]
|
34 |
|
35 |
demo = gr.Interface(
|
36 |
snap,
|
|
|
41 |
gr.Image(label="predicted segmentation"),
|
42 |
gr.Model3D(label="3D mesh reconstruction - RGB",
|
43 |
clear_color=[1.0, 1.0, 1.0, 1.0]),
|
44 |
+
gr.Plot(label="Point Cloud")]
|
45 |
)
|
46 |
|
47 |
if __name__ == "__main__":
|