Spaces:
Runtime error
Runtime error
from transformers import DPTImageProcessor, DPTForDepthEstimation | |
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry, SamPredictor | |
import gradio as gr | |
import supervision as sv | |
import torch | |
import numpy as np | |
from PIL import Image | |
import requests | |
import open3d as o3d | |
import pandas as pd | |
import plotly.express as px | |
class DepthPredictor: | |
def __init__(self): | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large") | |
self.model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
self.model.eval() | |
def predict(self, image): | |
# prepare image for the model | |
encoding = self.feature_extractor(image, return_tensors="pt") | |
self.img = image | |
# forward pass | |
with torch.no_grad(): | |
outputs = self.model(**encoding) | |
predicted_depth = outputs.predicted_depth | |
# interpolate to original size | |
prediction = torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), | |
size=image.size[::-1], | |
mode="bicubic", | |
align_corners=False, | |
).squeeze() | |
output = prediction.cpu().numpy() | |
formatted = (output * 255 / np.max(output)).astype('uint8') | |
#img = Image.fromarray(formatted) | |
return formatted | |
def generate_pcl(self, image): | |
depth = self.predict(image) | |
# Step 2: Create an RGBD image from the RGB and depth image | |
depth_o3d = o3d.geometry.Image(depth) | |
image_o3d = o3d.geometry.Image(image) | |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d, convert_rgb_to_intensity=False) | |
# Step 3: Create a PointCloud from the RGBD image | |
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, o3d.camera.PinholeCameraIntrinsic(o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault)) | |
# Step 4: Convert PointCloud data to a NumPy array | |
points = np.asarray(pcd.points) | |
colors = np.asarray(pcd.colors) | |
return points, colors | |
def generate_fig(self, image): | |
points, colors = self.generate_pcl(image) | |
data = {'x': points[:, 0], 'y': points[:, 1], 'z': points[:, 2], | |
'red': colors[:, 0], 'green': colors[:, 1], 'blue': colors[:, 2]} | |
df = pd.DataFrame(data) | |
size = np.zeros(len(df)) | |
size[:] = 0.01 | |
# Step 6: Create a 3D scatter plot using Plotly Express | |
fig = px.scatter_3d(df, x='x', y='y', z='z', color='red', size=size) | |
return fig | |
class SegmentPredictor: | |
def __init__(self): | |
MODEL_TYPE = "vit_b" | |
checkpoint = "sam_vit_b_01ec64.pth" | |
sam = sam_model_registry[MODEL_TYPE](checkpoint=checkpoint) | |
# Select device | |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
sam.to(device=self.device) | |
self.mask_generator = SamAutomaticMaskGenerator(sam) | |
self.conditioned_pred = SamPredictor(sam) | |
def encode(self, image): | |
image = np.array(image) | |
self.conditioned_pred.set_image(image) | |
def cond_pred(self, pts, lbls): | |
masks, _, _ = self.conditioned_pred.predict( | |
point_coords=pts, | |
point_labels=lbls, | |
multimask_output=True | |
) | |
return masks | |
def segment_everything(self, image): | |
image = np.array(image) | |
sam_result = self.mask_generator.generate(image) | |
mask_annotator = sv.MaskAnnotator() | |
detections = sv.Detections.from_sam(sam_result=sam_result) | |
annotated_image = mask_annotator.annotate(scene=image.copy(), detections=detections) | |
return annotated_image |