File size: 3,926 Bytes
6b8e3c4
077fc91
6b8e3c4
 
 
 
 
 
01bc85d
 
 
6b8e3c4
 
 
 
9780d7b
1d564b4
6b8e3c4
077fc91
6b8e3c4
 
9780d7b
01bc85d
9780d7b
6b8e3c4
9780d7b
6b8e3c4
9780d7b
 
 
 
 
 
 
 
 
 
 
62a1e0a
 
9780d7b
01bc85d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b8e3c4
 
 
67eca52
6b8e3c4
 
 
 
077fc91
 
 
6b8e3c4
077fc91
6b8e3c4
077fc91
 
 
 
 
 
 
 
 
 
 
 
 
 
f465c1d
6b8e3c4
 
 
 
344f858
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from transformers import DPTImageProcessor, DPTForDepthEstimation
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry, SamPredictor
import gradio as gr
import supervision as sv
import torch
import numpy as np
from PIL import Image
import requests
import open3d as o3d
import pandas as pd
import plotly.express as px

class DepthPredictor:
    def __init__(self):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
        self.model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
        self.model.eval()
    
    def predict(self, image):
        # prepare image for the model
        encoding = self.feature_extractor(image, return_tensors="pt")
        self.img = image
        # forward pass
        with torch.no_grad():
            outputs = self.model(**encoding)
            predicted_depth = outputs.predicted_depth
            
            # interpolate to original size
            prediction = torch.nn.functional.interpolate(
                                predicted_depth.unsqueeze(1),
                                size=image.size[::-1],
                                mode="bicubic",
                                align_corners=False,
                        ).squeeze()
            
        output = prediction.cpu().numpy()
        formatted = (output * 255 / np.max(output)).astype('uint8')
        #img = Image.fromarray(formatted)
        return formatted
    
    def generate_pcl(self, image):
        depth = self.predict(image)
        # Step 2: Create an RGBD image from the RGB and depth image
        depth_o3d = o3d.geometry.Image(depth)
        image_o3d = o3d.geometry.Image(image)
        rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d, convert_rgb_to_intensity=False)
        # Step 3: Create a PointCloud from the RGBD image
        pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, o3d.camera.PinholeCameraIntrinsic(o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault))
        # Step 4: Convert PointCloud data to a NumPy array
        points = np.asarray(pcd.points)
        colors = np.asarray(pcd.colors)
        return points, colors
    
    def generate_fig(self, image):
        points, colors = self.generate_pcl(image)
        data = {'x': points[:, 0], 'y': points[:, 1], 'z': points[:, 2],
            'red': colors[:, 0], 'green': colors[:, 1], 'blue': colors[:, 2]}
        df = pd.DataFrame(data)
        size = np.zeros(len(df))
        size[:] = 0.01
        # Step 6: Create a 3D scatter plot using Plotly Express
        fig = px.scatter_3d(df, x='x', y='y', z='z', color='red', size=size)
        return fig

    



class SegmentPredictor:
    def __init__(self):
        MODEL_TYPE = "vit_b"
        checkpoint = "sam_vit_b_01ec64.pth"
        sam = sam_model_registry[MODEL_TYPE](checkpoint=checkpoint)
        # Select device
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        sam.to(device=self.device)
        self.mask_generator = SamAutomaticMaskGenerator(sam)
        self.conditioned_pred = SamPredictor(sam)
    
    def encode(self, image):
        image = np.array(image)
        self.conditioned_pred.set_image(image)
    
    def cond_pred(self, pts, lbls):
        masks, _, _ = self.conditioned_pred.predict(
            point_coords=pts,
            point_labels=lbls,
            multimask_output=True
            )
        return masks


    def segment_everything(self, image):
        image = np.array(image)
        sam_result = self.mask_generator.generate(image)
        mask_annotator = sv.MaskAnnotator()
        detections = sv.Detections.from_sam(sam_result=sam_result)
        annotated_image = mask_annotator.annotate(scene=image.copy(), detections=detections)
        return annotated_image