File size: 4,769 Bytes
077fc91
5c0b534
7598e8a
077fc91
 
 
01bc85d
769894a
5c0b534
077fc91
 
1689431
01bc85d
077fc91
 
d4233b7
077fc91
 
 
 
 
 
 
 
 
d0ed3bd
077fc91
 
f07135c
077fc91
 
 
 
 
76253eb
c02210d
 
 
077fc91
effc523
706546d
 
 
077fc91
 
d4233b7
 
 
1689431
077fc91
4f4f67b
1689431
077fc91
 
d4233b7
706546d
1689431
077fc91
 
 
 
 
 
d4233b7
077fc91
d4233b7
 
077fc91
76253eb
077fc91
 
 
 
 
 
 
 
 
 
 
 
 
c02210d
 
 
 
 
 
fb5f1fe
c02210d
077fc91
b3873d0
077fc91
d4233b7
7299967
8f90f14
077fc91
 
5a6d6d4
 
d777e23
a68e603
5a6d6d4
 
 
077fc91
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import gradio as gr
import numpy as np
import cv2 
from PIL import Image
import torch
from inference import SegmentPredictor, DepthPredictor
from utils import generate_PCL, PCL3, point_cloud



sam = SegmentPredictor()
dpt = DepthPredictor()
red = (255,0,0)
blue = (0,0,255)
annos = []


block = gr.Blocks()
with block:
    # States
    def point_coords_empty():
        return []
    def point_labels_empty():
        return []
    raw_image = gr.Image(type='pil', visible=False)
    point_coords = gr.State(point_coords_empty)
    point_labels = gr.State(point_labels_empty)
    masks = gr.State([])
    cutout_idx = gr.State(set())

    # UI
    with gr.Column():
        with gr.Row():
            input_image = gr.Image(label='Input', type='pil', source='webcam', tool=None)
            with gr.Column():
                sam_encode_btn = gr.Button('Encode', variant='primary')
                sam_encode_status = gr.Label('Not encoded yet')
            masks_annotated_image = gr.AnnotatedImage(label='Segments', height=512)
            pcl_figure = gr.Model3D(label="3-D Reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0])
            with gr.Column():
                n_samples = gr.Slider(minimum=1e3, maximum=1e6, step=1e3, default=1e3, label='Number of Samples')
                cube_size = gr.Slider(minimum=0.000001, maximum=0.001, step=0.000001, default=0.00001, label='Cube size')
        with gr.Row():
            with gr.Column(scale=1):
                with gr.Row():
                    point_label_radio = gr.Radio(label='Point Label', choices=[1,0], value=1)
                    text = gr.Textbox(label='Mask Name')
                    reset_btn = gr.Button('New Mask')
                sam_sgmt_everything_btn = gr.Button('Segment Everything!', variant = 'primary')
                sam_decode_btn = gr.Button('Predict using points!', variant = 'primary')
                depth_reconstruction_btn = gr.Button('Depth Reconstruction', variant = 'primary')
    # components
    components = {point_coords, point_labels, raw_image, masks, cutout_idx, input_image,
                  point_label_radio, text, reset_btn, sam_sgmt_everything_btn,
                  sam_decode_btn, depth_reconstruction_btn, masks_annotated_image, n_samples, cube_size}
    
    # event - init coords
    def on_reset_btn_click(raw_image):
        return raw_image, point_coords_empty(), point_labels_empty(), None, []
    reset_btn.click(on_reset_btn_click, [raw_image], [input_image, point_coords, point_labels], queue=False)

    def on_input_image_upload(input_image):
        print("encoding")
        # encode image on upload
        sam.encode(input_image)
        print("encoding done")
        return input_image, point_coords_empty(), point_labels_empty(), None
    input_image.upload(on_input_image_upload, [input_image], [raw_image, point_coords, point_labels], queue=False)

    # event - set coords
    def on_input_image_select(input_image, point_coords, point_labels, point_label_radio, evt: gr.SelectData):
        x, y = evt.index
        color = red if point_label_radio == 0 else blue
        img = np.array(input_image)
        cv2.circle(img, (x, y), 5, color, -1)
        img = Image.fromarray(img)
        point_coords.append([x,y])
        point_labels.append(point_label_radio)
        return img, point_coords, point_labels
    input_image.select(on_input_image_select, [input_image, point_coords, point_labels, point_label_radio], [input_image, point_coords, point_labels], queue=False)

    def on_click_sam_encode_btn(inputs):
        print("encoding")
        # encode image on click
        sam.encode(inputs[input_image])
        print("encoding done")
        return {sam_encode_status: 'Image Encoded!'}
    sam_encode_btn.click(on_click_sam_encode_btn, components, [sam_encode_status], queue=False)

    def on_click_sam_dencode_btn(inputs):
        print("inferencing")
        image = inputs[raw_image]
        generated_mask, _, _ = sam.cond_pred(pts=np.array(inputs[point_coords]), lbls=np.array(inputs[point_labels]))
        inputs[masks].append((generated_mask, inputs[text]))
        return {masks_annotated_image: (image, inputs[masks])}
    sam_decode_btn.click(on_click_sam_dencode_btn, components, [masks_annotated_image, masks, cutout_idx], queue=True)

    def on_depth_reconstruction_btn_click(inputs):
        print("depth reconstruction")
        image = inputs[input_image]
        path = dpt.generate_obj_masks(image=image, n_samples=inputs[n_samples], cube_size=inputs[cube_size], masks=inputs[masks])
        return {pcl_figure: path}
    depth_reconstruction_btn.click(on_depth_reconstruction_btn_click, components, [pcl_figure], queue=False)


if __name__ == '__main__':
    block.queue()
    block.launch()