File size: 6,079 Bytes
077fc91
5c0b534
7598e8a
077fc91
 
 
01bc85d
769894a
5c0b534
077fc91
 
1689431
01bc85d
077fc91
 
d4233b7
077fc91
 
 
 
 
 
 
 
 
d46e73c
077fc91
 
f07135c
077fc91
c69e375
077fc91
 
 
 
c02210d
1758fb9
c02210d
 
9e6e225
fe0db59
 
c810b3c
9e6e225
0579ca3
706546d
0b87dc6
0579ca3
 
 
077fc91
0a54901
077fc91
d4233b7
 
 
1689431
077fc91
4f4f67b
1689431
077fc91
0579ca3
d4233b7
0a54901
1689431
077fc91
0579ca3
 
 
077fc91
f5cfe4e
077fc91
 
fe0db59
 
9e6e225
fe0db59
077fc91
 
613f332
9e6e225
fe0db59
9e6e225
613f332
f76bf44
9e6e225
f76bf44
f5cfe4e
9e6e225
0a54901
8687af5
0a54901
c69e375
c1a5086
 
0a54901
 
9503ae0
0a54901
93dec86
8687af5
0a54901
 
077fc91
c02210d
 
 
 
 
613f332
1c4f487
 
c02210d
077fc91
b3873d0
0579ca3
d4233b7
7299967
d46e73c
1c4f487
 
077fc91
5a6d6d4
 
0579ca3
17dfbdb
5a6d6d4
 
 
d7bd88e
 
 
c810b3c
ae29f3e
 
c69e375
 
d7bd88e
077fc91
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import gradio as gr
import numpy as np
import cv2 
from PIL import Image
import torch
from inference import SegmentPredictor, DepthPredictor
from utils import generate_PCL, PCL3, point_cloud



sam = SegmentPredictor()
dpt = DepthPredictor()
red = (255,0,0)
blue = (0,0,255)
annos = []


block = gr.Blocks()
with block:
    # States
    def point_coords_empty():
        return []
    def point_labels_empty():
        return []
    image_edit_trigger = gr.State(True)
    point_coords = gr.State(point_coords_empty)
    point_labels = gr.State(point_labels_empty)
    masks = gr.State([])
    cutout_idx = gr.State(set())
    everything_masks = gr.State([])

    # UI
    with gr.Column():
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label='Input', type='pil', tool=None) # mirror_webcam = False
                sam_encode_btn = gr.Button('Encode', variant='primary')
                sam_encode_status = gr.Label('Not encoded yet')
        with gr.Row():
            prompt_image = gr.Image(label='Segments')
            prompt_lbl_image = gr.AnnotatedImage(label='Segment Labels')
            everything_image = gr.AnnotatedImage(label='Everything')
            
        with gr.Row():
            with gr.Column():
                pcl_figure = gr.Model3D(label="3-D Reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0])
                with gr.Row():
                    n_samples = gr.Slider(minimum=1e3, maximum=1e6, step=1e3, default=1e3, label='Number of Samples')
                    cube_size = gr.Slider(minimum=0.000001, maximum=0.001, step=0.000001, default=0.00001, label='Cube size')
        with gr.Row():
            selected_masks_image = gr.AnnotatedImage(label='Selected Masks')
            with gr.Column(scale=1):
                with gr.Row():
                    point_label_radio = gr.Radio(label='Point Label', choices=[1,0], value=1)
                    text = gr.Textbox(label='Mask Name')
                    reset_btn = gr.Button('New Mask')
                sam_sgmt_everything_btn = gr.Button('Segment Everything!', variant = 'primary')
                sam_decode_btn = gr.Button('Predict using points!', variant = 'primary')
                depth_reconstruction_btn = gr.Button('Depth Reconstruction', variant = 'primary')
    # components
    components = {point_coords, point_labels, image_edit_trigger, masks, cutout_idx, input_image,
                  point_label_radio, text, reset_btn, sam_sgmt_everything_btn,
                  sam_decode_btn, depth_reconstruction_btn, prompt_image, prompt_lbl_image, n_samples, cube_size, selected_masks_image}
    
    # event - init coords
    def on_reset_btn_click(input_image):
        return input_image, point_coords_empty(), point_labels_empty(), None, []
    reset_btn.click(on_reset_btn_click, [input_image], [input_image, point_coords, point_labels], queue=False)

    def on_prompt_image_select(input_image, prompt_image, point_coords, point_labels, point_label_radio, evt: gr.SelectData):
        x, y = evt.index
        color = red if point_label_radio == 0 else blue
        if prompt_image is None:
            prompt_image = np.array(input_image.copy())

        cv2.circle(prompt_image, (x, y), 5, color, -1)
        point_coords.append([x,y])
        point_labels.append(point_label_radio)
        generated_mask, _, _ = sam.cond_pred(pts=np.array(point_coords), lbls=np.array(point_labels))

        return  [ prompt_image,
                  (input_image, [(generated_mask, "Mask")]),
                  point_coords,
                  point_labels ]
        
    prompt_image.select(on_prompt_image_select,
                       [input_image, prompt_image, point_coords, point_labels, point_label_radio],
                       [prompt_image, prompt_lbl_image, point_coords, point_labels], queue=False)
    
    def on_everything_image_select(input_image, everything_masks, masks, text, evt: gr.SelectData):
        i = evt.index
        mask = everything_masks[i][0]
        print(mask)
        print(type(mask))
        masks.append((mask, text))
        anno = (input_image, masks) 
        return  [masks, anno]
        
    everything_image.select(on_everything_image_select,
                       [input_image, everything_masks, masks, text],
                       [masks, selected_masks_image], queue=False)


    def on_click_sam_encode_btn(inputs):
        print("encoding")
        # encode image on click
        sam.encode(inputs[input_image])
        print("encoding done")
        return {sam_encode_status: 'Image Encoded!',
                prompt_image: inputs[input_image]}
    sam_encode_btn.click(on_click_sam_encode_btn, components, [sam_encode_status, prompt_image], queue=False)

    def on_click_sam_dencode_btn(inputs):
        print("inferencing")
        image = inputs[input_image]
        generated_mask, _, _ = sam.cond_pred(pts=np.array(inputs[point_coords]), lbls=np.array(inputs[point_labels]))
        inputs[masks].append((generated_mask, inputs[text]))
        print(inputs[masks][0])
        return {prompt_image: (image, inputs[masks])}
    sam_decode_btn.click(on_click_sam_dencode_btn, components, [prompt_image, masks, cutout_idx], queue=True)

    def on_depth_reconstruction_btn_click(inputs):
        print("depth reconstruction")
        image = inputs[input_image]
        path = dpt.generate_obj_rgb(image=image, n_samples=inputs[n_samples], cube_size=inputs[cube_size]) #
        return {pcl_figure: path}
    depth_reconstruction_btn.click(on_depth_reconstruction_btn_click, components, [pcl_figure], queue=False)

    def on_sam_sgmt_everything_btn_click(inputs):
        print("segmenting everything")
        image = inputs[input_image]
        sam_masks = sam.segment_everything(image)
        print(image)
        print(sam_masks)
        return [(image, sam_masks), sam_masks]
    sam_sgmt_everything_btn.click(on_sam_sgmt_everything_btn_click, components, [everything_image, everything_masks], queue=False)


if __name__ == '__main__':
    block.queue()
    block.launch()