Spaces:
Runtime error
Runtime error
File size: 2,357 Bytes
5c0b534 9b4ee8f 6b8e3c4 a979122 7598e8a 5c0b534 aeca07b 6b8e3c4 9780d7b aeca07b c1883e2 aeca07b c1883e2 aeca07b 371a984 fd2c88a 5c0b534 371a984 5c0b534 fd2c88a 371a984 fd2c88a 5c0b534 371a984 5c0b534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
import supervision as sv
from inference import DepthPredictor, SegmentPredictor
from utils import create_3d_obj, create_3d_pc, point_cloud
import numpy as np
def produce_depth_map(image):
depth_predictor = DepthPredictor()
depth_result = depth_predictor.predict(image)
return depth_result
def produce_segmentation_map(image):
segment_predictor = SegmentPredictor()
sam_result = segment_predictor.predict(image)
return sam_result
def produce_3d_reconstruction(image):
depth_predictor = DepthPredictor()
depth_result = depth_predictor.predict(image)
rgb_gltf_path = create_3d_obj(np.array(image), depth_result, path='./rgb.gltf')
return rgb_gltf_path
def produce_point_cloud(depth_map, segmentation_map):
return point_cloud(np.array(segmentation_map), depth_map)
def snap(image, depth_map, segmentation_map, video):
depth_result = produce_depth_map(image) if depth_map else None
sam_result = produce_segmentation_map(image) if segmentation_map else None
rgb_gltf_path = produce_3d_reconstruction(image) if depth_map else None
point_cloud_fig = produce_point_cloud(depth_result, sam_result) if segmentation_map else None
if video:
# Add video processing here if needed
pass
return [image, depth_result, sam_result, rgb_gltf_path, point_cloud_fig]
# Interface inputs
image_input = gr.Image(source="webcam", tool=None, label="Input Image", type="pil")
depth_map_button = gr.Button(label="Produce Depth Map", value=False)
segmentation_map_button = gr.Button(label="Produce Segmentation Map", value=False)
video_input = gr.Video(source="webcam")
# Interface outputs
output_image = gr.Image(label="RGB")
output_depth_map = gr.Image(label="Predicted Depth")
output_segmentation_map = gr.Image(label="Predicted Segmentation")
output_3d_reconstruction = gr.Model3D(label="3D mesh reconstruction - RGB", clear_color=[1.0, 1.0, 1.0, 1.0])
output_point_cloud = gr.Plot(label="Point Cloud")
# Interface
demo = gr.Interface(
snap,
inputs=[image_input, depth_map_button, segmentation_map_button, video_input],
outputs=[output_image, output_depth_map, output_segmentation_map, output_3d_reconstruction, output_point_cloud]
)
if __name__ == "__main__":
demo.launch() |