Spaces:
Runtime error
Runtime error
File size: 5,164 Bytes
077fc91 5c0b534 7598e8a 077fc91 01bc85d 769894a 5c0b534 077fc91 1689431 01bc85d 077fc91 d4233b7 077fc91 d46e73c 077fc91 f07135c 077fc91 c02210d 1758fb9 c02210d 8235071 0579ca3 706546d 0b87dc6 0579ca3 077fc91 d4233b7 1689431 077fc91 4f4f67b 1689431 077fc91 0579ca3 d4233b7 1c4f487 1689431 077fc91 0579ca3 077fc91 d4233b7 077fc91 d4233b7 077fc91 0579ca3 077fc91 f76bf44 077fc91 f76bf44 077fc91 613f332 f76bf44 2d1b836 1c4f487 613f332 f76bf44 d46e73c f76bf44 077fc91 c02210d 613f332 1c4f487 c02210d 077fc91 b3873d0 0579ca3 d4233b7 7299967 d46e73c 1c4f487 077fc91 5a6d6d4 0579ca3 85003e7 5a6d6d4 077fc91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import os
import gradio as gr
import numpy as np
import cv2
from PIL import Image
import torch
from inference import SegmentPredictor, DepthPredictor
from utils import generate_PCL, PCL3, point_cloud
sam = SegmentPredictor()
dpt = DepthPredictor()
red = (255,0,0)
blue = (0,0,255)
annos = []
block = gr.Blocks()
with block:
# States
def point_coords_empty():
return []
def point_labels_empty():
return []
image_edit_trigger = gr.State(True)
point_coords = gr.State(point_coords_empty)
point_labels = gr.State(point_labels_empty)
masks = gr.State([])
cutout_idx = gr.State(set())
# UI
with gr.Column():
with gr.Row():
with gr.Column():
input_image = gr.Image(label='Input', type='pil', tool=None) # mirror_webcam = False
sam_encode_btn = gr.Button('Encode', variant='primary')
sam_encode_status = gr.Label('Not encoded yet')
prompt_image = gr.Image(label='Segments')
with gr.Row():
with gr.Column():
pcl_figure = gr.Model3D(label="3-D Reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0])
with gr.Row():
n_samples = gr.Slider(minimum=1e3, maximum=1e6, step=1e3, default=1e3, label='Number of Samples')
cube_size = gr.Slider(minimum=0.000001, maximum=0.001, step=0.000001, default=0.00001, label='Cube size')
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
point_label_radio = gr.Radio(label='Point Label', choices=[1,0], value=1)
text = gr.Textbox(label='Mask Name')
reset_btn = gr.Button('New Mask')
sam_sgmt_everything_btn = gr.Button('Segment Everything!', variant = 'primary')
sam_decode_btn = gr.Button('Predict using points!', variant = 'primary')
depth_reconstruction_btn = gr.Button('Depth Reconstruction', variant = 'primary')
# components
components = {point_coords, point_labels, image_edit_trigger, masks, cutout_idx, input_image,
point_label_radio, text, reset_btn, sam_sgmt_everything_btn,
sam_decode_btn, depth_reconstruction_btn, prompt_image, n_samples, cube_size}
# event - init coords
def on_reset_btn_click(input_image):
return input_image, point_coords_empty(), point_labels_empty(), None, []
reset_btn.click(on_reset_btn_click, [input_image], [input_image, point_coords, point_labels], queue=False)
def on_input_image_upload(input_image):
print("encoding")
# encode image on upload
sam.encode(input_image)
print("encoding done")
return input_image, point_coords_empty(), point_labels_empty(), None
input_image.upload(on_input_image_upload, [input_image], [input_image, point_coords, point_labels], queue=False)
# event - set coords
def on_prompt_image_select(input_image, point_coords, point_labels, point_label_radio, evt: gr.SelectData):
x, y = evt.index
color = red if point_label_radio == 0 else blue
img = input_image.copy()
img = np.array(img)
cv2.circle(img, (x, y), 5, color, -1)
point_coords.append([x,y])
point_labels.append(point_label_radio)
generated_mask, _, _ = sam.cond_pred(pts=np.array(point_coords), lbls=np.array(point_labels))
img[generated_mask] = (255.0, 0.0, 0.0)
img = Image.fromarray(img)
return [ img,
point_coords,
point_labels ]
prompt_image.select(on_prompt_image_select,
[input_image, point_coords, point_labels, point_label_radio],
[prompt_image, point_coords, point_labels], queue=False)
def on_click_sam_encode_btn(inputs):
print("encoding")
# encode image on click
sam.encode(inputs[input_image])
print("encoding done")
return {sam_encode_status: 'Image Encoded!',
prompt_image: inputs[input_image]}
sam_encode_btn.click(on_click_sam_encode_btn, components, [sam_encode_status, prompt_image], queue=False)
def on_click_sam_dencode_btn(inputs):
print("inferencing")
image = inputs[input_image]
generated_mask, _, _ = sam.cond_pred(pts=np.array(inputs[point_coords]), lbls=np.array(inputs[point_labels]))
inputs[masks].append((generated_mask, inputs[text]))
print(inputs[masks][0])
return {prompt_image: (image, inputs[masks])}
sam_decode_btn.click(on_click_sam_dencode_btn, components, [prompt_image, masks, cutout_idx], queue=True)
def on_depth_reconstruction_btn_click(inputs):
print("depth reconstruction")
image = inputs[input_image]
path = dpt.generate_obj_masks(image=image, n_samples=inputs[n_samples], cube_size=inputs[cube_size], masks=inputs[masks])
return {pcl_figure: path}
depth_reconstruction_btn.click(on_depth_reconstruction_btn_click, components, [pcl_figure], queue=False)
if __name__ == '__main__':
block.queue()
block.launch() |