AI-Demo / TESTapp.py
Chris STC
Rename app.py to TESTapp.py
e9fe302
raw
history blame
1.91 kB
import gradio as gr
import os
import wget
from llama_cpp import Llama
import random
os.system('CMAKE_ARGS="-DLLAMA_OPENBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python')
url = 'https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GGML/resolve/main/WizardLM-7B-uncensored.ggmlv3.q2_K.bin'
filename = wget.download(url)
llm2 = Llama(model_path=filename, seed=random.randint(1, 2**31))
title = """<h1 align="center">Chat with awesome WizardLM 7b model!</h1><br>"""
description = "This model is awesome for its size! It is only 20th the size of Chatgpt but is around 90% as good as Chatgpt. However, please don't rely on WizardLM to provide 100% true information as it might be wrong sometimes."
def bot(user_message, temperature, top_p, top_k, repeat_penalty):
tokens3 = llm2.tokenize(user_message.encode())
token4 = llm2.tokenize(b"\n\n### Response:")
tokens = tokens3 + token4
output = ""
for token in llm2.generate(tokens, top_k=top_k, top_p=top_p, temp=temperature, repeat_penalty=repeat_penalty):
text = llm2.detokenize([token])
output += text.decode()
if token == llm2.token_eos():
break
# Removing other parts of the conversation, we just want the bot's response
response_start_idx = output.find("### Response:") + len("### Response:")
return output[response_start_idx:].strip()
interface = gr.Interface(
fn=bot,
inputs=[
gr.Textbox(label="Your Message", placeholder="Type your message here..."),
gr.Slider(minimum=0, maximum=2, default=1, label="Temperature"),
gr.Slider(minimum=0, maximum=1, default=0.73, label="Top P"),
gr.Slider(minimum=0, maximum=2048, default=50, label="Top_K"),
gr.Slider(minimum=0, maximum=2, default=1.1, label="Repeat Penalty")
],
outputs="text",
live=True,
description=description,
title=title
)
interface.launch(debug=True)