File size: 1,910 Bytes
44d3d18
 
 
 
 
16236e9
44d3d18
 
 
 
 
8a7e86d
44d3d18
 
8a7e86d
8917797
44d3d18
 
 
 
 
8917797
44d3d18
 
 
 
8a7e86d
44d3d18
 
 
8a7e86d
44d3d18
 
 
 
 
 
8917797
44d3d18
 
 
 
 
 
8a7e86d
 
44d3d18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import gradio as gr
import os
import wget
from llama_cpp import Llama
import random

os.system('CMAKE_ARGS="-DLLAMA_OPENBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python')

url = 'https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GGML/resolve/main/WizardLM-7B-uncensored.ggmlv3.q2_K.bin'
filename = wget.download(url)
llm2 = Llama(model_path=filename, seed=random.randint(1, 2**31))

title = """<h1 align="center">Chat with awesome WizardLM 7b model!</h1><br>"""
description = "This model is awesome for its size! It is only 20th the size of Chatgpt but is around 90% as good as Chatgpt. However, please don't rely on WizardLM to provide 100% true information as it might be wrong sometimes."

def bot(user_message, temperature, top_p, top_k, repeat_penalty):
    tokens3 = llm2.tokenize(user_message.encode())
    token4 = llm2.tokenize(b"\n\n### Response:")
    tokens = tokens3 + token4
    
    output = ""
    for token in llm2.generate(tokens, top_k=top_k, top_p=top_p, temp=temperature, repeat_penalty=repeat_penalty):
        text = llm2.detokenize([token])
        output += text.decode()
        if token == llm2.token_eos():
            break

    # Removing other parts of the conversation, we just want the bot's response
    response_start_idx = output.find("### Response:") + len("### Response:")
    return output[response_start_idx:].strip()

interface = gr.Interface(
    fn=bot,
    inputs=[
        gr.Textbox(label="Your Message", placeholder="Type your message here..."),
        gr.Slider(minimum=0, maximum=2, default=1, label="Temperature"),
        gr.Slider(minimum=0, maximum=1, default=0.73, label="Top P"),
        gr.Slider(minimum=0, maximum=2048, default=50, label="Top_K"),
        gr.Slider(minimum=0, maximum=2, default=1.1, label="Repeat Penalty")
    ],
    outputs="text",
    live=True,
    description=description,
    title=title
)

interface.launch(debug=True)