Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import DalleMini, DalleMiniProcessor | |
from PIL import Image | |
# Load model and processor | |
model_id = "dalle-mini/dalle-mega" | |
model = DalleMini.from_pretrained(model_id) | |
processor = DalleMiniProcessor.from_pretrained(model_id) | |
# Function to generate image | |
def generate_image(prompt, num_inference_steps=50): | |
inputs = processor(prompt, return_tensors="pt") | |
# Generate images | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, num_inference_steps=num_inference_steps) | |
# Convert to PIL image | |
image = processor.decode(outputs[0], skip_special_tokens=True) | |
image = Image.open(io.BytesIO(image)) | |
return image | |
# Define the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Text to Image Generation") | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here...") | |
num_inference_steps = gr.Slider(minimum=1, maximum=50, step=1, value=28, label="Number of Inference Steps") | |
with gr.Row(): | |
generate_button = gr.Button("Generate Image") | |
result = gr.Image(label="Generated Image") | |
# Connect the function to the button | |
generate_button.click( | |
fn=generate_image, | |
inputs=[prompt, num_inference_steps], | |
outputs=result | |
) | |
# Launch the Gradio app | |
demo.launch() | |