Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffusers import DiffusionPipeline # Note: Change `FluxPipeline` to `DiffusionPipeline` if `FluxPipeline` is not correct | |
from PIL import Image | |
# Function to determine the device and handle model loading | |
def setup_pipeline(): | |
# Check for CUDA availability | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load the diffusion model | |
try: | |
pipeline = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) | |
if device == "cpu": | |
# If using CPU, ensure model is offloaded to avoid GPU-specific features | |
pipeline.enable_model_cpu_offload() | |
else: | |
# Move model to GPU | |
pipeline.to(device) | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
raise e | |
return pipeline, device | |
pipeline, device = setup_pipeline() | |
def generate_image(prompt, guidance_scale=7.5, num_inference_steps=50): | |
# Generate an image based on the prompt | |
with torch.no_grad(): | |
try: | |
images = pipeline(prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images | |
except Exception as e: | |
print(f"Error generating image: {e}") | |
raise e | |
# Assuming pipeline returns a list of images, just take the first one | |
img = images[0] | |
# Convert PIL image to format suitable for Gradio | |
return img | |
# Set up Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Text to Image Generation") | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here...") | |
guidance_scale = gr.Slider(minimum=1, maximum=15, step=0.1, value=7.5, label="Guidance Scale") | |
num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=50, label="Number of Inference Steps") | |
with gr.Row(): | |
generate_button = gr.Button("Generate Image") | |
result = gr.Image(label="Generated Image") | |
# Connect the function to the button | |
generate_button.click( | |
fn=generate_image, | |
inputs=[prompt, guidance_scale, num_inference_steps], | |
outputs=result | |
) | |
# Launch the app | |
demo.launch() | |