Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,38 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from diffusers import FluxPipeline
|
4 |
from PIL import Image
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
10 |
|
11 |
-
|
12 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
-
pipeline.to(device)
|
14 |
|
15 |
def generate_image(prompt, guidance_scale=7.5, num_inference_steps=50):
|
16 |
# Generate an image based on the prompt
|
17 |
with torch.no_grad():
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
20 |
|
21 |
# Assuming pipeline returns a list of images, just take the first one
|
22 |
img = images[0]
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from diffusers import DiffusionPipeline # Note: Change `FluxPipeline` to `DiffusionPipeline` if `FluxPipeline` is not correct
|
4 |
from PIL import Image
|
5 |
|
6 |
+
# Function to determine the device and handle model loading
|
7 |
+
def setup_pipeline():
|
8 |
+
# Check for CUDA availability
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
# Load the diffusion model
|
12 |
+
try:
|
13 |
+
pipeline = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
|
14 |
+
if device == "cpu":
|
15 |
+
# If using CPU, ensure model is offloaded to avoid GPU-specific features
|
16 |
+
pipeline.enable_model_cpu_offload()
|
17 |
+
else:
|
18 |
+
# Move model to GPU
|
19 |
+
pipeline.to(device)
|
20 |
+
except Exception as e:
|
21 |
+
print(f"Error loading model: {e}")
|
22 |
+
raise e
|
23 |
|
24 |
+
return pipeline, device
|
25 |
|
26 |
+
pipeline, device = setup_pipeline()
|
|
|
|
|
27 |
|
28 |
def generate_image(prompt, guidance_scale=7.5, num_inference_steps=50):
|
29 |
# Generate an image based on the prompt
|
30 |
with torch.no_grad():
|
31 |
+
try:
|
32 |
+
images = pipeline(prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Error generating image: {e}")
|
35 |
+
raise e
|
36 |
|
37 |
# Assuming pipeline returns a list of images, just take the first one
|
38 |
img = images[0]
|