File size: 1,552 Bytes
a24294c
 
5d657f5
a485d72
a24294c
5d657f5
 
a24294c
5d657f5
 
 
a485d72
5d657f5
 
 
 
 
a24294c
5d657f5
 
a24294c
5d657f5
 
a24294c
5d657f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a24294c
 
5d657f5
a485d72
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
import torch
from diffusers import DiffusionPipeline
from PIL import Image

# Load the diffusion model
pipeline = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev")

# Set the model to the appropriate device
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline.to(device)

def generate_image(prompt, guidance_scale=7.5, num_inference_steps=50):
    # Generate an image based on the prompt
    with torch.no_grad():
        # Generate images
        images = pipeline(prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images
    
    # Assuming pipeline returns a list of images, just take the first one
    img = images[0]
    
    # Convert PIL image to format suitable for Gradio
    return img

# Set up Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Text to Image Generation")
    
    with gr.Row():
        prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here...")
        guidance_scale = gr.Slider(minimum=1, maximum=15, step=0.1, value=7.5, label="Guidance Scale")
        num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=50, label="Number of Inference Steps")
    
    with gr.Row():
        generate_button = gr.Button("Generate Image")
    
    result = gr.Image(label="Generated Image")
    
    # Connect the function to the button
    generate_button.click(
        fn=generate_image,
        inputs=[prompt, guidance_scale, num_inference_steps],
        outputs=result
    )

# Launch the app
demo.launch()