Spaces:
Sleeping
Sleeping
from typing import Callable,List,Any | |
from pathlib import Path | |
from lightning import LightningDataModule | |
from lightning.pytorch.utilities.types import TRAIN_DATALOADERS,EVAL_DATALOADERS | |
import torch | |
from torch.utils.data import DataLoader,random_split | |
from torchvision import transforms | |
from torchvision.datasets import MNIST | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
class LitMNISTDataModule(LightningDataModule): | |
def __init__( | |
self, | |
data_dir:Path = Path('.'), | |
batch_size:int = 32, | |
num_workers:int = 0, | |
test_transform:Callable = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=(.1307,),std=(.3081,))]), | |
train_transform:Callable = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=(.1307,),std=(.3081,))]) | |
) -> None: | |
super().__init__() | |
self.data_dir:Path = data_dir | |
self.batch_size:int = batch_size | |
self.num_workers:int = num_workers | |
self.test_transform:Callable = test_transform | |
self.train_transform:Callable = train_transform | |
self.save_hyperparameters() | |
def prepare_data(self) -> None: | |
MNIST(self.data_dir,train=True,download=True) | |
MNIST(self.data_dir,train=False,download=True) | |
def setup(self, stage: str=None) -> None: | |
if stage=="fit" or stage is None: | |
_mnist_full = MNIST(self.data_dir,train=True,transform=self.train_transform) | |
self.mnist_train, self.mnist_val = random_split(_mnist_full,[.9,.1],generator=torch.Generator(device)) | |
if stage=='test' or stage is None: | |
self.mnist_test = MNIST(self.data_dir,train=False, transform=self.test_transform) | |
def train_dataloader(self) -> TRAIN_DATALOADERS: | |
return DataLoader(self.mnist_train,batch_size=self.batch_size,num_workers=self.num_workers,collate_fn=None,shuffle=True,generator= torch.Generator(device) ) | |
def val_dataloader(self) -> EVAL_DATALOADERS: | |
return DataLoader(self.mnist_val,batch_size=self.batch_size,num_workers=self.num_workers,collate_fn=None,shuffle=False,generator= torch.Generator(device)) | |
def test_dataloader(self) -> EVAL_DATALOADERS: | |
return DataLoader(self.mnist_test,batch_size=self.batch_size,num_workers=self.num_workers,collate_fn=None,shuffle=False,generator= torch.Generator(device)) | |