from typing import Callable,List,Any from pathlib import Path from lightning import LightningDataModule from lightning.pytorch.utilities.types import TRAIN_DATALOADERS,EVAL_DATALOADERS import torch from torch.utils.data import DataLoader,random_split from torchvision import transforms from torchvision.datasets import MNIST device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') class LitMNISTDataModule(LightningDataModule): def __init__( self, data_dir:Path = Path('.'), batch_size:int = 32, num_workers:int = 0, test_transform:Callable = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=(.1307,),std=(.3081,))]), train_transform:Callable = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=(.1307,),std=(.3081,))]) ) -> None: super().__init__() self.data_dir:Path = data_dir self.batch_size:int = batch_size self.num_workers:int = num_workers self.test_transform:Callable = test_transform self.train_transform:Callable = train_transform self.save_hyperparameters() def prepare_data(self) -> None: MNIST(self.data_dir,train=True,download=True) MNIST(self.data_dir,train=False,download=True) def setup(self, stage: str=None) -> None: if stage=="fit" or stage is None: _mnist_full = MNIST(self.data_dir,train=True,transform=self.train_transform) self.mnist_train, self.mnist_val = random_split(_mnist_full,[.9,.1],generator=torch.Generator(device)) if stage=='test' or stage is None: self.mnist_test = MNIST(self.data_dir,train=False, transform=self.test_transform) def train_dataloader(self) -> TRAIN_DATALOADERS: return DataLoader(self.mnist_train,batch_size=self.batch_size,num_workers=self.num_workers,collate_fn=None,shuffle=True,generator= torch.Generator(device) ) def val_dataloader(self) -> EVAL_DATALOADERS: return DataLoader(self.mnist_val,batch_size=self.batch_size,num_workers=self.num_workers,collate_fn=None,shuffle=False,generator= torch.Generator(device)) def test_dataloader(self) -> EVAL_DATALOADERS: return DataLoader(self.mnist_test,batch_size=self.batch_size,num_workers=self.num_workers,collate_fn=None,shuffle=False,generator= torch.Generator(device))