Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- Dockerfile +18 -0
- app.py +22 -17
Dockerfile
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM public.ecr.aws/docker/library/python:3.11.10-slim
|
2 |
+
|
3 |
+
# Install AWS Lambda Web Adapter
|
4 |
+
COPY --from=public.ecr.aws/awsguru/aws-lambda-adapter:0.8.4 /lambda-adapter /opt/extensions/lambda-adapter
|
5 |
+
|
6 |
+
WORKDIR /var/task
|
7 |
+
|
8 |
+
# Copy and install requirements
|
9 |
+
COPY requirements.txt ./
|
10 |
+
RUN pip install -r requirements.txt
|
11 |
+
|
12 |
+
# Copy application code and model
|
13 |
+
COPY app.py ./
|
14 |
+
COPY best_model.pt ./
|
15 |
+
COPY examples/ ./examples/
|
16 |
+
|
17 |
+
# Set command
|
18 |
+
CMD ["python3", "app.py"]
|
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
import torch
|
3 |
import lightning as pl
|
4 |
import gradio as gr
|
@@ -6,11 +7,13 @@ from PIL import Image
|
|
6 |
from torchvision import transforms
|
7 |
from timeit import default_timer as timer
|
8 |
from torch.nn import functional as F
|
|
|
9 |
|
10 |
-
torch.set_float32_matmul_precision(
|
11 |
-
device = torch.device(
|
|
|
12 |
torch.set_default_device(device=device)
|
13 |
-
torch.autocast(enabled=True, dtype=
|
14 |
|
15 |
pl.seed_everything(123, workers=True)
|
16 |
|
@@ -34,7 +37,7 @@ class_labels = [
|
|
34 |
|
35 |
|
36 |
# Model
|
37 |
-
model = torch.jit.load(
|
38 |
|
39 |
|
40 |
@torch.no_grad()
|
@@ -53,27 +56,29 @@ def predict_fn(img: Image):
|
|
53 |
predicted_label = class_labels[y_pred]
|
54 |
# print(confidence,predicted_label)
|
55 |
pred_time = round(timer() - start_time, 5)
|
56 |
-
res = {f
|
57 |
return (res, pred_time)
|
58 |
except Exception as e:
|
59 |
-
print(f
|
60 |
-
gr.Error(
|
61 |
-
return ({
|
62 |
|
63 |
|
64 |
gr.Interface(
|
65 |
fn=predict_fn,
|
66 |
-
inputs=gr.Image(type=
|
67 |
outputs=[
|
68 |
-
gr.Label(num_top_classes=1, label=
|
69 |
-
gr.Number(label=
|
70 |
],
|
71 |
examples=[
|
72 |
-
[
|
73 |
-
for i in os.listdir(os.path.join(os.path.dirname(__file__),
|
74 |
],
|
75 |
-
title=
|
76 |
-
description=
|
77 |
-
article=
|
78 |
cache_examples=True,
|
79 |
-
|
|
|
|
|
|
1 |
import os
|
2 |
+
from numpy.lib.type_check import imag
|
3 |
import torch
|
4 |
import lightning as pl
|
5 |
import gradio as gr
|
|
|
7 |
from torchvision import transforms
|
8 |
from timeit import default_timer as timer
|
9 |
from torch.nn import functional as F
|
10 |
+
from gradio.flagging import SimpleCSVLogger
|
11 |
|
12 |
+
torch.set_float32_matmul_precision("medium")
|
13 |
+
# device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
14 |
+
device = torch.device("cpu")
|
15 |
torch.set_default_device(device=device)
|
16 |
+
torch.autocast(enabled=True, dtype="float16", device_type="cuda")
|
17 |
|
18 |
pl.seed_everything(123, workers=True)
|
19 |
|
|
|
37 |
|
38 |
|
39 |
# Model
|
40 |
+
model:torch.nn.Module = torch.jit.load("best_model.pt", map_location=device).to(device)
|
41 |
|
42 |
|
43 |
@torch.no_grad()
|
|
|
56 |
predicted_label = class_labels[y_pred]
|
57 |
# print(confidence,predicted_label)
|
58 |
pred_time = round(timer() - start_time, 5)
|
59 |
+
res = {f"Title: {predicted_label}": confidence}
|
60 |
return (res, pred_time)
|
61 |
except Exception as e:
|
62 |
+
print(f"error:: {e}")
|
63 |
+
gr.Error("An error occured 💥!", duration=5)
|
64 |
+
return ({"Title ☠️": 0.0}, 0.0)
|
65 |
|
66 |
|
67 |
gr.Interface(
|
68 |
fn=predict_fn,
|
69 |
+
inputs=gr.Image(type="pil"),
|
70 |
outputs=[
|
71 |
+
gr.Label(num_top_classes=1, label="Predictions"), # what are the outputs?
|
72 |
+
gr.Number(label="Prediction time (s)"),
|
73 |
],
|
74 |
examples=[
|
75 |
+
["examples/" + i]
|
76 |
+
for i in os.listdir(os.path.join(os.path.dirname(__file__), "examples"))
|
77 |
],
|
78 |
+
title="Dog Breeds Classifier 🐈",
|
79 |
+
description="CNN-based Architecture for Fast and Accurate DogsBreed Classifier",
|
80 |
+
article="Created by muthukamalan.m ❤️",
|
81 |
cache_examples=True,
|
82 |
+
flagging_options=[],
|
83 |
+
flagging_callback=SimpleCSVLogger()
|
84 |
+
).launch(share=False, debug=False,server_name="0.0.0.0",server_port=8080,enable_monitoring=None)
|