Muthukamalan commited on
Commit
08a94a9
·
verified ·
1 Parent(s): dce9fbe

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. Dockerfile +18 -0
  2. app.py +22 -17
Dockerfile ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM public.ecr.aws/docker/library/python:3.11.10-slim
2
+
3
+ # Install AWS Lambda Web Adapter
4
+ COPY --from=public.ecr.aws/awsguru/aws-lambda-adapter:0.8.4 /lambda-adapter /opt/extensions/lambda-adapter
5
+
6
+ WORKDIR /var/task
7
+
8
+ # Copy and install requirements
9
+ COPY requirements.txt ./
10
+ RUN pip install -r requirements.txt
11
+
12
+ # Copy application code and model
13
+ COPY app.py ./
14
+ COPY best_model.pt ./
15
+ COPY examples/ ./examples/
16
+
17
+ # Set command
18
+ CMD ["python3", "app.py"]
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import os
 
2
  import torch
3
  import lightning as pl
4
  import gradio as gr
@@ -6,11 +7,13 @@ from PIL import Image
6
  from torchvision import transforms
7
  from timeit import default_timer as timer
8
  from torch.nn import functional as F
 
9
 
10
- torch.set_float32_matmul_precision('medium')
11
- device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
 
12
  torch.set_default_device(device=device)
13
- torch.autocast(enabled=True, dtype='float16', device_type='cuda')
14
 
15
  pl.seed_everything(123, workers=True)
16
 
@@ -34,7 +37,7 @@ class_labels = [
34
 
35
 
36
  # Model
37
- model = torch.jit.load('best_model.pt', map_location=device).to(device)
38
 
39
 
40
  @torch.no_grad()
@@ -53,27 +56,29 @@ def predict_fn(img: Image):
53
  predicted_label = class_labels[y_pred]
54
  # print(confidence,predicted_label)
55
  pred_time = round(timer() - start_time, 5)
56
- res = {f'Title: {predicted_label}': confidence}
57
  return (res, pred_time)
58
  except Exception as e:
59
- print(f'error:: {e}')
60
- gr.Error('An error occured 💥!', duration=5)
61
- return ({'Title ☠️': 0.0}, 0.0)
62
 
63
 
64
  gr.Interface(
65
  fn=predict_fn,
66
- inputs=gr.Image(type='pil'),
67
  outputs=[
68
- gr.Label(num_top_classes=1, label='Predictions'), # what are the outputs?
69
- gr.Number(label='Prediction time (s)'),
70
  ],
71
  examples=[
72
- ['examples/' + i]
73
- for i in os.listdir(os.path.join(os.path.dirname(__file__), 'examples'))
74
  ],
75
- title='Dog Breeds Classifier 🐈',
76
- description='CNN-based Architecture for Fast and Accurate DogsBreed Classifier',
77
- article='Created by muthukamalan.m ❤️',
78
  cache_examples=True,
79
- ).launch(share=False, debug=False)
 
 
 
1
  import os
2
+ from numpy.lib.type_check import imag
3
  import torch
4
  import lightning as pl
5
  import gradio as gr
 
7
  from torchvision import transforms
8
  from timeit import default_timer as timer
9
  from torch.nn import functional as F
10
+ from gradio.flagging import SimpleCSVLogger
11
 
12
+ torch.set_float32_matmul_precision("medium")
13
+ # device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
14
+ device = torch.device("cpu")
15
  torch.set_default_device(device=device)
16
+ torch.autocast(enabled=True, dtype="float16", device_type="cuda")
17
 
18
  pl.seed_everything(123, workers=True)
19
 
 
37
 
38
 
39
  # Model
40
+ model:torch.nn.Module = torch.jit.load("best_model.pt", map_location=device).to(device)
41
 
42
 
43
  @torch.no_grad()
 
56
  predicted_label = class_labels[y_pred]
57
  # print(confidence,predicted_label)
58
  pred_time = round(timer() - start_time, 5)
59
+ res = {f"Title: {predicted_label}": confidence}
60
  return (res, pred_time)
61
  except Exception as e:
62
+ print(f"error:: {e}")
63
+ gr.Error("An error occured 💥!", duration=5)
64
+ return ({"Title ☠️": 0.0}, 0.0)
65
 
66
 
67
  gr.Interface(
68
  fn=predict_fn,
69
+ inputs=gr.Image(type="pil"),
70
  outputs=[
71
+ gr.Label(num_top_classes=1, label="Predictions"), # what are the outputs?
72
+ gr.Number(label="Prediction time (s)"),
73
  ],
74
  examples=[
75
+ ["examples/" + i]
76
+ for i in os.listdir(os.path.join(os.path.dirname(__file__), "examples"))
77
  ],
78
+ title="Dog Breeds Classifier 🐈",
79
+ description="CNN-based Architecture for Fast and Accurate DogsBreed Classifier",
80
+ article="Created by muthukamalan.m ❤️",
81
  cache_examples=True,
82
+ flagging_options=[],
83
+ flagging_callback=SimpleCSVLogger()
84
+ ).launch(share=False, debug=False,server_name="0.0.0.0",server_port=8080,enable_monitoring=None)