Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -7,3 +7,6 @@ sdk_version: 4.44.1
|
|
7 |
license: mit
|
8 |
pinned: true
|
9 |
---
|
|
|
|
|
|
|
|
7 |
license: mit
|
8 |
pinned: true
|
9 |
---
|
10 |
+
|
11 |
+
|
12 |
+
# DogBreedsClassifier
|
app.py
CHANGED
@@ -1,70 +1,79 @@
|
|
1 |
-
import os
|
2 |
import torch
|
3 |
-
import numpy as np
|
4 |
import lightning as pl
|
5 |
-
import gradio as gr
|
6 |
from PIL import Image
|
7 |
from torchvision import transforms
|
8 |
-
from timeit import default_timer as timer
|
9 |
from torch.nn import functional as F
|
10 |
|
11 |
torch.set_float32_matmul_precision('medium')
|
12 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
13 |
-
torch.set_default_device(
|
14 |
-
torch.autocast(enabled
|
15 |
|
16 |
pl.seed_everything(123, workers=True)
|
17 |
|
18 |
TEST_TRANSFORMS = transforms.Compose([
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
class_labels= [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
# Model
|
27 |
-
model = torch.jit.load('best_model.pt',map_location=device).to(device)
|
28 |
|
29 |
|
30 |
@torch.no_grad()
|
31 |
-
def predict_fn(img:Image):
|
32 |
start_time = timer()
|
33 |
-
try:
|
34 |
-
# img = np.array(img)
|
35 |
-
# print(img)
|
36 |
img = TEST_TRANSFORMS(img).to(device)
|
37 |
# print(type(img),img.shape)
|
38 |
logits = model(img.unsqueeze(0))
|
39 |
-
probabilities = F.softmax(logits,dim=-1)
|
40 |
# print(torch.topk(probabilities,k=2))
|
41 |
y_pred = probabilities.argmax(dim=-1).item()
|
42 |
confidence = probabilities[0][y_pred].item()
|
43 |
predicted_label = class_labels[y_pred]
|
44 |
# print(confidence,predicted_label)
|
45 |
-
pred_time = round(timer()-start_time,5)
|
46 |
-
res = {f
|
47 |
-
return (res,pred_time)
|
48 |
except Exception as e:
|
49 |
-
print(f
|
50 |
-
gr.Error(
|
51 |
-
return ({
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
|
57 |
gr.Interface(
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
1 |
+
import os
|
2 |
import torch
|
|
|
3 |
import lightning as pl
|
4 |
+
import gradio as gr
|
5 |
from PIL import Image
|
6 |
from torchvision import transforms
|
7 |
+
from timeit import default_timer as timer
|
8 |
from torch.nn import functional as F
|
9 |
|
10 |
torch.set_float32_matmul_precision('medium')
|
11 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
12 |
+
torch.set_default_device(device=device)
|
13 |
+
torch.autocast(enabled=True, dtype='float16', device_type='cuda')
|
14 |
|
15 |
pl.seed_everything(123, workers=True)
|
16 |
|
17 |
TEST_TRANSFORMS = transforms.Compose([
|
18 |
+
transforms.Resize((224, 224)),
|
19 |
+
transforms.ToTensor(),
|
20 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
21 |
+
])
|
22 |
+
class_labels = [
|
23 |
+
'Beagle',
|
24 |
+
'Boxer',
|
25 |
+
'Bulldog',
|
26 |
+
'Dachshund',
|
27 |
+
'German_Shepherd',
|
28 |
+
'Golden_Retriever',
|
29 |
+
'Labrador_Retriever',
|
30 |
+
'Poodle',
|
31 |
+
'Rottweiler',
|
32 |
+
'Yorkshire_Terrier',
|
33 |
+
]
|
34 |
|
35 |
|
36 |
# Model
|
37 |
+
model = torch.jit.load('best_model.pt', map_location=device).to(device)
|
38 |
|
39 |
|
40 |
@torch.no_grad()
|
41 |
+
def predict_fn(img: Image):
|
42 |
start_time = timer()
|
43 |
+
try:
|
44 |
+
# img = np.array(img)
|
45 |
+
# print(img)
|
46 |
img = TEST_TRANSFORMS(img).to(device)
|
47 |
# print(type(img),img.shape)
|
48 |
logits = model(img.unsqueeze(0))
|
49 |
+
probabilities = F.softmax(logits, dim=-1)
|
50 |
# print(torch.topk(probabilities,k=2))
|
51 |
y_pred = probabilities.argmax(dim=-1).item()
|
52 |
confidence = probabilities[0][y_pred].item()
|
53 |
predicted_label = class_labels[y_pred]
|
54 |
# print(confidence,predicted_label)
|
55 |
+
pred_time = round(timer() - start_time, 5)
|
56 |
+
res = {f'Title: {predicted_label}': confidence}
|
57 |
+
return (res, pred_time)
|
58 |
except Exception as e:
|
59 |
+
print(f'error:: {e}')
|
60 |
+
gr.Error('An error occured 💥!', duration=5)
|
61 |
+
return ({'Title ☠️': 0.0}, 0.0)
|
|
|
|
|
|
|
62 |
|
63 |
|
64 |
gr.Interface(
|
65 |
+
fn=predict_fn,
|
66 |
+
inputs=gr.Image(type='pil'),
|
67 |
+
outputs=[
|
68 |
+
gr.Label(num_top_classes=1, label='Predictions'), # what are the outputs?
|
69 |
+
gr.Number(label='Prediction time (s)'),
|
70 |
+
],
|
71 |
+
examples=[
|
72 |
+
['examples/' + i]
|
73 |
+
for i in os.listdir(os.path.join(os.path.dirname(__file__), 'examples'))
|
74 |
+
],
|
75 |
+
title='Dog Breeds Classifier 🐈',
|
76 |
+
description='CNN-based Architecture for Fast and Accurate DogsBreed Classifier',
|
77 |
+
article='Created by muthukamalan.m ❤️',
|
78 |
+
cache_examples=True,
|
79 |
+
).launch(share=False, debug=False)
|