Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import numpy as np | |
import lightning as pl | |
import gradio as gr | |
from PIL import Image | |
from torchvision import transforms | |
from timeit import default_timer as timer | |
from torch.nn import functional as F | |
torch.set_float32_matmul_precision('medium') | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
torch.set_default_device( device= device ) | |
torch.autocast(enabled = True,dtype='float16',device_type='cuda') | |
pl.seed_everything(123, workers=True) | |
TEST_TRANSFORMS = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
class_labels= ['Beagle', 'Boxer', 'Bulldog', 'Dachshund', 'German_Shepherd', 'Golden_Retriever','Labrador_Retriever', 'Poodle','Rottweiler','Yorkshire_Terrier'] | |
# Model | |
if device=='cuda': model = torch.jit.load('best_model.pt').to(device) | |
else: model=torch.load('best_model.pt') | |
def predict_fn(img:Image): | |
start_time = timer() | |
try: | |
# img = np.array(img) | |
# print(img) | |
img = TEST_TRANSFORMS(img).to(device) | |
# print(type(img),img.shape) | |
logits = model(img.unsqueeze(0)) | |
probabilities = F.softmax(logits,dim=-1) | |
# print(torch.topk(probabilities,k=2)) | |
y_pred = probabilities.argmax(dim=-1).item() | |
confidence = probabilities[0][y_pred].item() | |
predicted_label = class_labels[y_pred] | |
# print(confidence,predicted_label) | |
pred_time = round(timer()-start_time,5) | |
res = {f"Title: {predicted_label}":confidence} | |
return (res,pred_time) | |
except Exception as e: | |
print(f"error:: {e}") | |
gr.Error("An error occured 💥!", duration=5) | |
return ({ f"Title ☠️": 0.0},0.0) | |
gr.Interface( | |
fn=predict_fn, | |
inputs=gr.Image(type='pil'), | |
outputs=[ | |
gr.Label(num_top_classes=1, label="Predictions"), # what are the outputs? | |
gr.Number(label="Prediction time (s)") | |
], | |
examples=[ ['examples/'+i] for i in os.listdir(os.path.join( os.path.dirname(__file__) ,'examples'))], | |
title="Dog Breeds Classifier 🐈", | |
description="CNN-based Architecture for Fast and Accurate DogsBreed Classifier", | |
article="Created by muthukamalan.m ❤️", | |
cache_examples=True, | |
).launch(share=False,debug=False) | |