File size: 2,465 Bytes
9c1f464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffad640
 
 
9c1f464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os 
import torch
import numpy as np
import lightning as pl
import gradio as gr 
from PIL import Image
from torchvision import transforms
from timeit import default_timer as timer 
from torch.nn import functional as F

torch.set_float32_matmul_precision('medium')
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
torch.set_default_device( device= device  )
torch.autocast(enabled = True,dtype='float16',device_type='cuda')

pl.seed_everything(123, workers=True)

TEST_TRANSFORMS = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])
class_labels= ['Beagle', 'Boxer', 'Bulldog', 'Dachshund', 'German_Shepherd', 'Golden_Retriever','Labrador_Retriever', 'Poodle','Rottweiler','Yorkshire_Terrier']


# Model
if device=='cuda': model = torch.jit.load('best_model.pt').to(device)
else: model=torch.load('best_model.pt')


@torch.no_grad()
def predict_fn(img:Image):
    start_time = timer()
    try:    
        # img = np.array(img)   
        # print(img)     
        img = TEST_TRANSFORMS(img).to(device)
        # print(type(img),img.shape)
        logits = model(img.unsqueeze(0))
        probabilities = F.softmax(logits,dim=-1)
        # print(torch.topk(probabilities,k=2))
        y_pred = probabilities.argmax(dim=-1).item()
        confidence = probabilities[0][y_pred].item()
        predicted_label = class_labels[y_pred]
        # print(confidence,predicted_label)
        pred_time = round(timer()-start_time,5)
        res = {f"Title: {predicted_label}":confidence}
        return (res,pred_time)
    except Exception as e:
        print(f"error:: {e}")
        gr.Error("An error occured 💥!", duration=5)
        return ({ f"Title ☠️": 0.0},0.0)





gr.Interface(
        fn=predict_fn,
        inputs=gr.Image(type='pil'),
        outputs=[
            gr.Label(num_top_classes=1, label="Predictions"), # what are the outputs?
            gr.Number(label="Prediction time (s)")
        ],
        examples=[ ['examples/'+i] for i in os.listdir(os.path.join( os.path.dirname(__file__) ,'examples'))],
        title="Dog Breeds Classifier 🐈",
        description="CNN-based Architecture for Fast and Accurate DogsBreed Classifier",
        article="Created by muthukamalan.m ❤️",
        cache_examples=True,
        ).launch(share=False,debug=False)