Muthukamalan commited on
Commit
9c1f464
·
verified ·
1 Parent(s): ac52005

Upload folder using huggingface_hub

Browse files
.github/workflows/update_space.yml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Run Python script
2
+
3
+ on:
4
+ push:
5
+ branches:
6
+ - main
7
+
8
+ jobs:
9
+ build:
10
+ runs-on: ubuntu-latest
11
+
12
+ steps:
13
+ - name: Checkout
14
+ uses: actions/checkout@v2
15
+
16
+ - name: Set up Python
17
+ uses: actions/setup-python@v2
18
+ with:
19
+ python-version: '3.9'
20
+
21
+ - name: Install Gradio
22
+ run: python -m pip install -r requirements.txt
23
+
24
+ - name: Log in to Hugging Face
25
+ run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
26
+
27
+ - name: Deploy to Spaces
28
+ run: cd gradio/ && gradio deploy
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- title: Echo Chatbot
3
- emoji: 💻
4
- colorFrom: gray
5
- colorTo: blue
6
- sdk: gradio
7
- sdk_version: 5.6.0
8
  app_file: app.py
9
- pinned: false
 
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: echo-chatbot
 
 
 
 
 
3
  app_file: app.py
4
+ sdk: gradio
5
+ sdk_version: 4.44.1
6
  ---
 
 
app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import numpy as np
4
+ import lightning as pl
5
+ import gradio as gr
6
+ from PIL import Image
7
+ from torchvision import transforms
8
+ from timeit import default_timer as timer
9
+ from torch.nn import functional as F
10
+
11
+ torch.set_float32_matmul_precision('medium')
12
+ device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
13
+ torch.set_default_device( device= device )
14
+ torch.autocast(enabled = True,dtype='float16',device_type='cuda')
15
+
16
+ pl.seed_everything(123, workers=True)
17
+
18
+ TEST_TRANSFORMS = transforms.Compose([
19
+ transforms.Resize((224, 224)),
20
+ transforms.ToTensor(),
21
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
22
+ ])
23
+ class_labels= ['Beagle', 'Boxer', 'Bulldog', 'Dachshund', 'German_Shepherd', 'Golden_Retriever','Labrador_Retriever', 'Poodle','Rottweiler','Yorkshire_Terrier']
24
+
25
+
26
+ # Model
27
+ model = torch.jit.load('best_model.pt').to(device)
28
+
29
+ @torch.no_grad()
30
+ def predict_fn(img:Image):
31
+ start_time = timer()
32
+ try:
33
+ # img = np.array(img)
34
+ # print(img)
35
+ img = TEST_TRANSFORMS(img).to(device)
36
+ # print(type(img),img.shape)
37
+ logits = model(img.unsqueeze(0))
38
+ probabilities = F.softmax(logits,dim=-1)
39
+ # print(torch.topk(probabilities,k=2))
40
+ y_pred = probabilities.argmax(dim=-1).item()
41
+ confidence = probabilities[0][y_pred].item()
42
+ predicted_label = class_labels[y_pred]
43
+ # print(confidence,predicted_label)
44
+ pred_time = round(timer()-start_time,5)
45
+ res = {f"Title: {predicted_label}":confidence}
46
+ return (res,pred_time)
47
+ except Exception as e:
48
+ print(f"error:: {e}")
49
+ gr.Error("An error occured 💥!", duration=5)
50
+ return ({ f"Title ☠️": 0.0},0.0)
51
+
52
+
53
+
54
+
55
+
56
+ gr.Interface(
57
+ fn=predict_fn,
58
+ inputs=gr.Image(type='pil'),
59
+ outputs=[
60
+ gr.Label(num_top_classes=1, label="Predictions"), # what are the outputs?
61
+ gr.Number(label="Prediction time (s)")
62
+ ],
63
+ examples=[ ['examples/'+i] for i in os.listdir(os.path.join( os.path.dirname(__file__) ,'examples'))],
64
+ title="Dog Breeds Classifier 🐈",
65
+ description="CNN-based Architecture for Fast and Accurate DogsBreed Classifier",
66
+ article="Created by muthukamalan.m ❤️",
67
+ cache_examples=True,
68
+ ).launch(share=False,debug=False)
69
+
best_model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32a2bf828456af508eab2d44f0305883e779380bb33a9b90004381c68b64ad51
3
+ size 1024905
examples/guess1.jpg ADDED
examples/guess2.jpg ADDED
gradio_cached_examples/16/indices.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ 1
2
+ 0
gradio_cached_examples/16/log.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ Predictions,Prediction time (s),flag,username,timestamp
2
+ "{""label"": ""Title \u2620\ufe0f"", ""confidences"": [{""label"": ""Title \u2620\ufe0f"", ""confidence"": 0.0}]}",0.0,,,2024-11-20 16:28:01.033882
3
+ "{""label"": ""Title \u2620\ufe0f"", ""confidences"": [{""label"": ""Title \u2620\ufe0f"", ""confidence"": 0.0}]}",0.0,,,2024-11-20 16:28:04.131286