Update app.py
Browse files
app.py
CHANGED
@@ -1,85 +1,102 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import
|
4 |
-
|
5 |
-
from PIL import Image
|
6 |
-
from
|
|
|
|
|
|
|
|
|
7 |
import spaces
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
def
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
positive_prompt = (
|
50 |
-
"Replace the masked humans with imaginary Indian bride and groom wearing traditional Indian wedding attire, "
|
51 |
-
"with detailed embroidery, colorful saree and sherwani, realistic faces, natural skin texture, matching pose, "
|
52 |
-
"perfect lighting, and the same camera perspective. Keep the background unchanged."
|
53 |
-
)
|
54 |
|
55 |
-
|
56 |
-
"blurry, distorted, deformed, double face, extra limbs, low quality, bad proportions, low resolution, "
|
57 |
-
"changed background, multiple faces, duplicate body parts, cartoon, watermark, text"
|
58 |
-
)
|
59 |
|
60 |
-
|
61 |
-
output = pipe(
|
62 |
-
prompt=positive_prompt,
|
63 |
-
negative_prompt=negative_prompt,
|
64 |
-
image=input_image,
|
65 |
-
mask_image=mask,
|
66 |
-
num_inference_steps=40,
|
67 |
-
guidance_scale=8.5
|
68 |
-
).images[0]
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
# Gradio
|
73 |
with gr.Blocks() as demo:
|
74 |
-
gr.Markdown("
|
75 |
|
76 |
with gr.Row():
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import base64
|
4 |
+
import io
|
5 |
+
from PIL import Image
|
6 |
+
from diffusers import StableDiffusionPipeline
|
7 |
+
from safetensors.torch import load_file
|
8 |
+
from src.pipeline import FluxPipeline
|
9 |
+
from src.transformer_flux import FluxTransformer2DModel
|
10 |
+
from src.lora_helper import set_single_lora, clear_cache
|
11 |
import spaces
|
12 |
|
13 |
+
# Load Base Model and LoRA
|
14 |
+
base_model = "black-forest-labs/FLUX.1-dev"
|
15 |
+
lora_path = "checkpoints/models/Ghibli.safetensors"
|
16 |
+
|
17 |
+
# Load the main pipeline
|
18 |
+
pipe = FluxPipeline.from_pretrained(base_model, torch_dtype=torch.float16)
|
19 |
+
transformer = FluxTransformer2DModel.from_pretrained(base_model, subfolder="transformer", torch_dtype=torch.float16)
|
20 |
+
pipe.transformer = transformer
|
21 |
+
pipe.to("cuda")
|
22 |
+
|
23 |
+
# Load LoRA
|
24 |
+
set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512)
|
25 |
+
|
26 |
+
# Base64 to Image
|
27 |
+
def base64_to_image(base64_str):
|
28 |
+
image_data = base64.b64decode(base64_str)
|
29 |
+
return Image.open(io.BytesIO(image_data)).convert("RGB")
|
30 |
+
|
31 |
+
# Image to Base64
|
32 |
+
def image_to_base64(image):
|
33 |
+
buffered = io.BytesIO()
|
34 |
+
image.save(buffered, format="PNG")
|
35 |
+
return base64.b64encode(buffered.getvalue()).decode()
|
36 |
+
|
37 |
+
# Cartoonizer function
|
38 |
+
def cartoonize_base64(b64_image, prompt="Ghibli Studio style, hand-drawn anime illustration", height=768, width=768, seed=42):
|
39 |
+
input_image = base64_to_image(b64_image)
|
40 |
+
|
41 |
+
generator = torch.Generator(device="cuda").manual_seed(int(seed))
|
42 |
+
|
43 |
+
result = pipe(
|
44 |
+
prompt=prompt,
|
45 |
+
height=int(height),
|
46 |
+
width=int(width),
|
47 |
+
guidance_scale=3.5,
|
48 |
+
num_inference_steps=25,
|
49 |
+
generator=generator,
|
50 |
+
spatial_images=[input_image],
|
51 |
+
cond_size=512
|
52 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
clear_cache(pipe.transformer)
|
|
|
|
|
|
|
55 |
|
56 |
+
return image_to_base64(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Gradio UI function
|
59 |
+
def ui_cartoonize(image, prompt, height, width, seed):
|
60 |
+
buffered = io.BytesIO()
|
61 |
+
image.save(buffered, format="PNG")
|
62 |
+
b64_image = base64.b64encode(buffered.getvalue()).decode()
|
63 |
+
cartoon_b64 = cartoonize_base64(b64_image, prompt, height, width, seed)
|
64 |
+
cartoon_image = base64_to_image(cartoon_b64)
|
65 |
+
return cartoon_image
|
66 |
|
67 |
+
# Gradio App
|
68 |
with gr.Blocks() as demo:
|
69 |
+
gr.Markdown("# 🎨 Ghibli Style Cartoonizer using EasyControl")
|
70 |
|
71 |
with gr.Row():
|
72 |
+
with gr.Column():
|
73 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
74 |
+
prompt = gr.Textbox(label="Prompt", value="Ghibli Studio style, hand-drawn anime illustration")
|
75 |
+
height = gr.Slider(512, 1024, step=64, value=768, label="Height")
|
76 |
+
width = gr.Slider(512, 1024, step=64, value=768, label="Width")
|
77 |
+
seed = gr.Number(label="Seed", value=42)
|
78 |
+
generate_btn = gr.Button("Generate Ghibli Image")
|
79 |
+
with gr.Column():
|
80 |
+
output_image = gr.Image(label="Cartoonized Output")
|
81 |
+
|
82 |
+
generate_btn.click(
|
83 |
+
fn=ui_cartoonize,
|
84 |
+
inputs=[input_image, prompt, height, width, seed],
|
85 |
+
outputs=output_image
|
86 |
+
)
|
87 |
|
88 |
+
# Gradio API: Accept base64, return base64
|
89 |
+
gr.Interface(
|
90 |
+
fn=cartoonize_base64,
|
91 |
+
inputs=[
|
92 |
+
gr.Text(label="Base64 Image Input"),
|
93 |
+
gr.Text(label="Prompt"),
|
94 |
+
gr.Number(label="Height", value=768),
|
95 |
+
gr.Number(label="Width", value=768),
|
96 |
+
gr.Number(label="Seed", value=42)
|
97 |
+
],
|
98 |
+
outputs=gr.Text(label="Base64 Cartoon Output"),
|
99 |
+
api_name="predict"
|
100 |
+
)
|
101 |
|
102 |
demo.launch()
|