Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
-
from diffusers import
|
5 |
from PIL import Image, ImageDraw
|
6 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
7 |
import spaces
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
# Load
|
12 |
-
pipe =
|
13 |
-
"
|
14 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
15 |
-
|
16 |
).to(device)
|
17 |
|
18 |
-
# Load DETR
|
19 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
20 |
detector = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50").to(device)
|
21 |
|
22 |
@spaces.GPU
|
23 |
-
def
|
24 |
if input_image is None or prompt == "":
|
25 |
return None
|
26 |
|
@@ -35,56 +35,51 @@ def detect_and_replace(input_image, prompt, negative_prompt=""):
|
|
35 |
mask = Image.new("L", input_image.size, 0)
|
36 |
draw = ImageDraw.Draw(mask)
|
37 |
|
38 |
-
|
39 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
40 |
if detector.config.id2label[label.item()] == "person":
|
41 |
box = [int(i) for i in box.tolist()]
|
42 |
-
boxes.append(box)
|
43 |
draw.rectangle(box, fill=255)
|
|
|
44 |
|
45 |
-
if not
|
46 |
return "No human detected."
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
# Paste the resized image at the correct location
|
72 |
-
output_image.paste(resized_generated, (x1, y1), mask=None) # You can add mask for soft edges later
|
73 |
-
|
74 |
-
return output_image
|
75 |
|
76 |
# Gradio UI
|
77 |
with gr.Blocks() as demo:
|
78 |
-
gr.Markdown("## Replace Bride and Groom
|
79 |
|
80 |
with gr.Row():
|
81 |
input_image = gr.Image(type="pil", label="Input Image")
|
82 |
output_image = gr.Image(type="pil", label="Output Image")
|
83 |
|
84 |
-
prompt_text = gr.Textbox(label="Prompt", placeholder="
|
85 |
-
negative_prompt_text = gr.Textbox(label="Negative Prompt", placeholder="Optional negative prompt")
|
86 |
submit = gr.Button("Submit")
|
87 |
|
88 |
-
submit.click(
|
89 |
|
90 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
+
from diffusers import StableDiffusionXLInpaintPipeline
|
5 |
from PIL import Image, ImageDraw
|
6 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
7 |
import spaces
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
+
# Load the Stable Diffusion XL Inpainting model
|
12 |
+
pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
|
13 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
14 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
15 |
+
variant="fp16",
|
16 |
).to(device)
|
17 |
|
18 |
+
# Load the DETR object detection model
|
19 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
20 |
detector = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50").to(device)
|
21 |
|
22 |
@spaces.GPU
|
23 |
+
def detect_and_replace_humans(input_image, prompt):
|
24 |
if input_image is None or prompt == "":
|
25 |
return None
|
26 |
|
|
|
35 |
mask = Image.new("L", input_image.size, 0)
|
36 |
draw = ImageDraw.Draw(mask)
|
37 |
|
38 |
+
found = False
|
39 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
40 |
if detector.config.id2label[label.item()] == "person":
|
41 |
box = [int(i) for i in box.tolist()]
|
|
|
42 |
draw.rectangle(box, fill=255)
|
43 |
+
found = True
|
44 |
|
45 |
+
if not found:
|
46 |
return "No human detected."
|
47 |
|
48 |
+
# Pre-defined positive and negative prompts
|
49 |
+
positive_prompt = (
|
50 |
+
"Replace the masked humans with imaginary Indian bride and groom wearing traditional Indian wedding attire, "
|
51 |
+
"with detailed embroidery, colorful saree and sherwani, realistic faces, natural skin texture, matching pose, "
|
52 |
+
"perfect lighting, and the same camera perspective. Keep the background unchanged."
|
53 |
+
)
|
54 |
+
|
55 |
+
negative_prompt = (
|
56 |
+
"blurry, distorted, deformed, double face, extra limbs, low quality, bad proportions, low resolution, "
|
57 |
+
"changed background, multiple faces, duplicate body parts, cartoon, watermark, text"
|
58 |
+
)
|
59 |
+
|
60 |
+
# Inpainting process
|
61 |
+
output = pipe(
|
62 |
+
prompt=positive_prompt,
|
63 |
+
negative_prompt=negative_prompt,
|
64 |
+
image=input_image,
|
65 |
+
mask_image=mask,
|
66 |
+
num_inference_steps=40,
|
67 |
+
guidance_scale=8.5
|
68 |
+
).images[0]
|
69 |
+
|
70 |
+
return output
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# Gradio UI
|
73 |
with gr.Blocks() as demo:
|
74 |
+
gr.Markdown("## Replace Humans with Imaginary Indian Bride and Groom (Background Preserved)")
|
75 |
|
76 |
with gr.Row():
|
77 |
input_image = gr.Image(type="pil", label="Input Image")
|
78 |
output_image = gr.Image(type="pil", label="Output Image")
|
79 |
|
80 |
+
prompt_text = gr.Textbox(label="Prompt (Optional, Predefined Prompt Used)", placeholder="You can leave this blank")
|
|
|
81 |
submit = gr.Button("Submit")
|
82 |
|
83 |
+
submit.click(detect_and_replace_humans, inputs=[input_image, prompt_text], outputs=output_image)
|
84 |
|
85 |
demo.launch()
|