Update app.py
Browse files
app.py
CHANGED
@@ -8,9 +8,9 @@ import spaces
|
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
# Load
|
12 |
pipe = DiffusionPipeline.from_pretrained(
|
13 |
-
"SG161222/RealVisXL_V4.0",
|
14 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
15 |
use_safetensors=True
|
16 |
).to(device)
|
@@ -47,13 +47,13 @@ def detect_and_replace(input_image, prompt, negative_prompt=""):
|
|
47 |
|
48 |
output_image = input_image.copy()
|
49 |
|
50 |
-
for box in boxes:
|
51 |
x1, y1, x2, y2 = box
|
52 |
width, height = x2 - x1, y2 - y1
|
53 |
|
54 |
-
# Generate
|
55 |
generated_image = pipe(
|
56 |
-
prompt=prompt,
|
57 |
negative_prompt=negative_prompt,
|
58 |
width=512,
|
59 |
height=768,
|
@@ -62,11 +62,14 @@ def detect_and_replace(input_image, prompt, negative_prompt=""):
|
|
62 |
output_type="pil"
|
63 |
).images[0]
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
|
68 |
-
#
|
69 |
-
|
|
|
|
|
|
|
70 |
|
71 |
return output_image
|
72 |
|
|
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
+
# Load realistic human generation model
|
12 |
pipe = DiffusionPipeline.from_pretrained(
|
13 |
+
"SG161222/RealVisXL_V4.0",
|
14 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
15 |
use_safetensors=True
|
16 |
).to(device)
|
|
|
47 |
|
48 |
output_image = input_image.copy()
|
49 |
|
50 |
+
for idx, box in enumerate(boxes):
|
51 |
x1, y1, x2, y2 = box
|
52 |
width, height = x2 - x1, y2 - y1
|
53 |
|
54 |
+
# Generate one realistic human image per person
|
55 |
generated_image = pipe(
|
56 |
+
prompt=f"{prompt}, full body, plain background, isolated subject",
|
57 |
negative_prompt=negative_prompt,
|
58 |
width=512,
|
59 |
height=768,
|
|
|
62 |
output_type="pil"
|
63 |
).images[0]
|
64 |
|
65 |
+
# Crop the subject to avoid white borders
|
66 |
+
cropped_generated = generated_image.crop(generated_image.getbbox())
|
67 |
|
68 |
+
# Resize generated image to fit detected box
|
69 |
+
resized_generated = cropped_generated.resize((width, height))
|
70 |
+
|
71 |
+
# Paste the resized image at the correct location
|
72 |
+
output_image.paste(resized_generated, (x1, y1), mask=None) # You can add mask for soft edges later
|
73 |
|
74 |
return output_image
|
75 |
|