File size: 45,484 Bytes
05104b1
 
 
 
 
 
 
 
 
 
 
 
 
630b873
05104b1
630b873
05104b1
 
630b873
05104b1
 
 
 
630b873
05104b1
7f65796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
630b873
05104b1
 
 
 
 
 
630b873
 
05104b1
 
 
630b873
05104b1
 
 
630b873
05104b1
 
630b873
 
 
 
 
 
 
05104b1
 
630b873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05104b1
630b873
 
05104b1
7f65796
 
 
 
 
 
 
 
 
 
630b873
05104b1
 
630b873
7f65796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05104b1
 
630b873
 
 
 
 
 
 
05104b1
630b873
05104b1
 
630b873
 
05104b1
 
630b873
05104b1
 
 
 
 
 
 
630b873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05104b1
630b873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05104b1
630b873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05104b1
630b873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05104b1
630b873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05104b1
630b873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05104b1
 
630b873
05104b1
630b873
 
 
05104b1
 
630b873
 
 
05104b1
630b873
05104b1
630b873
 
 
 
 
05104b1
 
630b873
 
 
 
 
 
 
 
 
 
05104b1
630b873
05104b1
 
630b873
 
05104b1
 
 
630b873
7f65796
05104b1
 
 
 
630b873
 
7f65796
 
630b873
7f65796
 
 
 
630b873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f65796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05104b1
 
 
 
630b873
05104b1
 
 
 
 
 
 
 
 
630b873
 
05104b1
 
 
630b873
7f65796
05104b1
 
 
 
630b873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f65796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05104b1
 
 
 
630b873
05104b1
 
 
 
 
 
 
 
630b873
 
 
 
 
7f65796
 
 
 
 
 
 
630b873
 
 
 
7f65796
 
 
 
630b873
7f65796
 
 
 
 
 
 
 
 
 
 
 
630b873
7f65796
630b873
 
 
 
 
 
05104b1
630b873
 
05104b1
 
630b873
 
 
05104b1
 
630b873
 
05104b1
630b873
 
 
 
 
 
05104b1
 
 
630b873
05104b1
630b873
 
 
05104b1
 
 
630b873
 
05104b1
630b873
05104b1
630b873
 
 
 
 
 
 
 
05104b1
630b873
05104b1
7f65796
 
 
 
 
 
 
 
630b873
 
 
 
 
 
 
 
 
 
 
05104b1
7f65796
630b873
 
 
 
 
 
 
 
 
 
05104b1
 
630b873
05104b1
 
630b873
 
 
 
 
 
05104b1
 
630b873
 
 
05104b1
 
630b873
05104b1
630b873
 
 
05104b1
630b873
 
 
 
 
 
 
 
 
 
05104b1
 
 
 
 
630b873
05104b1
 
630b873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05104b1
 
 
 
630b873
05104b1
 
630b873
05104b1
 
 
 
 
 
 
 
630b873
05104b1
 
630b873
 
 
 
 
05104b1
 
 
 
 
630b873
05104b1
 
 
 
 
 
 
 
 
 
630b873
 
05104b1
630b873
05104b1
630b873
 
 
05104b1
630b873
 
 
05104b1
630b873
 
 
 
 
 
05104b1
630b873
 
 
 
05104b1
 
 
 
630b873
 
 
05104b1
 
630b873
 
05104b1
 
630b873
05104b1
 
 
 
 
 
 
 
 
 
 
 
630b873
 
05104b1
 
630b873
 
05104b1
 
 
 
 
 
 
 
 
 
630b873
05104b1
630b873
05104b1
630b873
05104b1
 
 
630b873
 
 
 
 
 
 
 
 
05104b1
 
 
 
630b873
 
 
 
 
 
 
 
05104b1
630b873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05104b1
 
 
 
 
 
630b873
 
 
 
 
 
 
 
 
 
 
 
05104b1
 
 
630b873
05104b1
 
 
 
 
630b873
 
 
 
05104b1
 
 
 
630b873
 
05104b1
 
 
 
630b873
05104b1
 
 
630b873
05104b1
 
 
 
 
630b873
05104b1
 
 
 
 
630b873
05104b1
 
630b873
 
 
 
 
 
 
 
05104b1
 
630b873
05104b1
 
 
 
630b873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05104b1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
import gradio as gr
import torch
import numpy as np
import cv2
from PIL import Image
import json
import os
from typing import List, Dict, Any
import tempfile
import subprocess
from pathlib import Path
import spaces
import gc
from huggingface_hub import hf_hub_download

# Latest and best open-source models
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from diffusers import (
    FluxPipeline,
    DDIMScheduler,
    DPMSolverMultistepScheduler
)
import soundfile as sf
import requests

# Optional imports for enhanced performance
try:
    import flash_attn
    FLASH_ATTN_AVAILABLE = True
except ImportError:
    FLASH_ATTN_AVAILABLE = False
    print("⚠️ Flash Attention not available - using standard attention")

try:
    import triton
    TRITON_AVAILABLE = True
except ImportError:
    TRITON_AVAILABLE = False
    print("⚠️ Triton not available - using standard operations")

class ProfessionalCartoonFilmGenerator:
    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.temp_dir = tempfile.mkdtemp()
        
        # Model configurations for ZeroGPU optimization
        self.models_loaded = False
        self.flux_pipe = None
        self.script_enhancer = None
        
    @spaces.GPU
    def load_models(self):
        """Load state-of-the-art models for professional quality"""
        if self.models_loaded:
            return
            
        print("πŸš€ Loading professional-grade models...")
        
        try:
            # 1. FLUX pipeline for superior image generation
            print("🎨 Loading FLUX pipeline...")
            self.flux_pipe = FluxPipeline.from_pretrained(
                "black-forest-labs/FLUX.1-dev",
                torch_dtype=torch.bfloat16,
                variant="fp16",
                use_safetensors=True
            ).to(self.device)
            
            # Load cartoon/anime LoRA for character generation
            print("🎭 Loading cartoon LoRA models...")
            try:
                # Load multiple LoRA models for different purposes
                self.cartoon_lora = hf_hub_download(
                    "prithivMLmods/Canopus-LoRA-Flux-Anime", 
                    "Canopus-LoRA-Flux-Anime.safetensors"
                )
                self.character_lora = hf_hub_download(
                    "enhanceaiteam/Anime-Flux",
                    "anime-flux.safetensors"  
                )
                self.sketch_lora = hf_hub_download(
                    "Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch",
                    "FLUX-dev-lora-children-simple-sketch.safetensors"
                )
                print("βœ… LoRA models loaded successfully")
            except Exception as e:
                print(f"⚠️ Some LoRA models failed to load: {e}")
            
            # Enable memory optimizations
            self.flux_pipe.enable_vae_slicing()
            self.flux_pipe.enable_vae_tiling()
            
            # Enable flash attention if available
            if FLASH_ATTN_AVAILABLE:
                try:
                    self.flux_pipe.enable_xformers_memory_efficient_attention()
                    print("βœ… Flash attention enabled for better performance")
                except Exception as e:
                    print(f"⚠️ Flash attention failed: {e}")
            else:
                print("ℹ️ Using standard attention (flash attention not available)")
            
            print("βœ… FLUX pipeline loaded successfully")
            
        except Exception as e:
            print(f"❌ FLUX pipeline failed: {e}")
            print("πŸ”„ Falling back to Stable Diffusion...")
            
            # Fallback to Stable Diffusion
            try:
                from diffusers import StableDiffusionPipeline
                self.flux_pipe = StableDiffusionPipeline.from_pretrained(
                    "runwayml/stable-diffusion-v1-5",
                    torch_dtype=torch.float16,
                    use_safetensors=True,
                    safety_checker=None,
                    requires_safety_checker=False
                ).to(self.device)
                
                # Enable memory optimizations
                self.flux_pipe.enable_vae_slicing()
                if hasattr(self.flux_pipe, 'enable_vae_tiling'):
                    self.flux_pipe.enable_vae_tiling()
                
                print("βœ… Stable Diffusion fallback loaded successfully")
                
            except Exception as e2:
                print(f"❌ Stable Diffusion fallback also failed: {e2}")
                self.flux_pipe = None
        
        try:
            # 2. Advanced script generation model
            print("πŸ“ Loading script enhancement model...")
            self.script_enhancer = pipeline(
                "text-generation",
                model="microsoft/DialoGPT-large",
                torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
                device=0 if self.device == "cuda" else -1
            )
            print("βœ… Script enhancer loaded")
            
        except Exception as e:
            print(f"❌ Script enhancer failed: {e}")
            self.script_enhancer = None
        
        self.models_loaded = True
        print("🎬 All professional models loaded!")
    
    def clear_gpu_memory(self):
        """Clear GPU memory between operations"""
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            gc.collect()
    
    def generate_professional_script(self, user_input: str) -> Dict[str, Any]:
        """Generate a professional cartoon script with detailed character development"""
        
        # Advanced script analysis
        words = user_input.lower().split()
        
        # Character analysis
        main_character = self._analyze_main_character(words)
        setting = self._analyze_setting(words)
        theme = self._analyze_theme(words)
        genre = self._analyze_genre(words)
        mood = self._analyze_mood(words)
        
        # Generate sophisticated character profiles
        characters = self._create_detailed_characters(main_character, theme, genre)
        
        # Create professional story structure (8 scenes for perfect pacing)
        scenes = self._create_cinematic_scenes(characters, setting, theme, genre, mood, user_input)
        
        return {
            "title": f"The {theme.title()}: A {genre.title()} Adventure",
            "genre": genre,
            "mood": mood,
            "theme": theme,
            "characters": characters,
            "scenes": scenes,
            "setting": setting,
            "style": f"Professional 2D cartoon animation in {genre} style with cinematic lighting and expressive character animation",
            "color_palette": self._generate_color_palette(mood, genre),
            "animation_notes": f"Focus on {mood} expressions, smooth character movement, and detailed background art"
        }
    
    def _analyze_main_character(self, words):
        """Sophisticated character analysis"""
        if any(word in words for word in ['girl', 'woman', 'princess', 'heroine', 'daughter', 'sister']):
            return "brave young heroine"
        elif any(word in words for word in ['boy', 'man', 'hero', 'prince', 'son', 'brother']):
            return "courageous young hero"
        elif any(word in words for word in ['robot', 'android', 'cyborg', 'machine', 'ai']):
            return "friendly robot character"
        elif any(word in words for word in ['cat', 'dog', 'fox', 'bear', 'wolf', 'animal']):
            return "adorable animal protagonist"
        elif any(word in words for word in ['dragon', 'fairy', 'wizard', 'witch', 'magic']):
            return "magical creature"
        elif any(word in words for word in ['alien', 'space', 'star', 'galaxy']):
            return "curious alien visitor"
        else:
            return "charming protagonist"
    
    def _analyze_setting(self, words):
        """Advanced setting analysis"""
        if any(word in words for word in ['forest', 'woods', 'trees', 'jungle', 'nature']):
            return "enchanted forest with mystical atmosphere"
        elif any(word in words for word in ['city', 'town', 'urban', 'street', 'building']):
            return "vibrant bustling city with colorful architecture"
        elif any(word in words for word in ['space', 'stars', 'planet', 'galaxy', 'cosmic']):
            return "spectacular cosmic landscape with nebulae and distant planets"
        elif any(word in words for word in ['ocean', 'sea', 'underwater', 'beach', 'water']):
            return "beautiful underwater world with coral reefs"
        elif any(word in words for word in ['mountain', 'cave', 'valley', 'cliff']):
            return "majestic mountain landscape with dramatic vistas"
        elif any(word in words for word in ['castle', 'kingdom', 'palace', 'medieval']):
            return "magical kingdom with towering castle spires"
        elif any(word in words for word in ['school', 'classroom', 'library', 'study']):
            return "charming school environment with warm lighting"
        else:
            return "wonderfully imaginative fantasy world"
    
    def _analyze_theme(self, words):
        """Identify story themes"""
        if any(word in words for word in ['friend', 'friendship', 'help', 'together', 'team']):
            return "power of friendship"
        elif any(word in words for word in ['treasure', 'find', 'search', 'discover', 'quest']):
            return "epic treasure quest"
        elif any(word in words for word in ['save', 'rescue', 'protect', 'danger', 'hero']):
            return "heroic rescue mission"
        elif any(word in words for word in ['magic', 'magical', 'spell', 'wizard', 'enchant']):
            return "magical discovery"
        elif any(word in words for word in ['learn', 'grow', 'change', 'journey']):
            return "journey of self-discovery"
        elif any(word in words for word in ['family', 'home', 'parent', 'love']):
            return "importance of family"
        else:
            return "heartwarming adventure"
    
    def _analyze_genre(self, words):
        """Determine animation genre"""
        if any(word in words for word in ['adventure', 'quest', 'journey', 'explore']):
            return "adventure"
        elif any(word in words for word in ['funny', 'comedy', 'laugh', 'silly', 'humor']):
            return "comedy"
        elif any(word in words for word in ['magic', 'fantasy', 'fairy', 'wizard', 'enchant']):
            return "fantasy"
        elif any(word in words for word in ['space', 'robot', 'future', 'sci-fi', 'technology']):
            return "sci-fi"
        elif any(word in words for word in ['mystery', 'secret', 'solve', 'detective']):
            return "mystery"
        else:
            return "family-friendly"
    
    def _analyze_mood(self, words):
        """Determine overall mood"""
        if any(word in words for word in ['happy', 'joy', 'fun', 'celebrate', 'party']):
            return "joyful"
        elif any(word in words for word in ['exciting', 'thrill', 'adventure', 'fast']):
            return "exciting"
        elif any(word in words for word in ['peaceful', 'calm', 'gentle', 'quiet']):
            return "peaceful"
        elif any(word in words for word in ['mysterious', 'secret', 'hidden', 'unknown']):
            return "mysterious"
        elif any(word in words for word in ['brave', 'courage', 'strong', 'bold']):
            return "inspiring"
        else:
            return "heartwarming"
    
    def _create_detailed_characters(self, main_char, theme, genre):
        """Create detailed character profiles"""
        characters = []
        
        # Main character with detailed description
        main_desc = f"Professional cartoon-style {main_char} with large expressive eyes, detailed facial features, vibrant clothing, Disney-Pixar quality design, {genre} aesthetic, highly detailed"
        characters.append({
            "name": main_char,
            "description": main_desc,
            "personality": f"brave, kind, determined, optimistic, perfect for {theme}",
            "role": "protagonist",
            "animation_style": "lead character quality with detailed expressions"
        })
        
        # Supporting character
        support_desc = f"Charming cartoon companion with warm personality, detailed character design, complementary colors to main character, {genre} style, supporting role"
        characters.append({
            "name": "loyal companion",
            "description": support_desc, 
            "personality": "wise, encouraging, helpful, comic relief",
            "role": "supporting",
            "animation_style": "high-quality supporting character design"
        })
        
        # Optional antagonist for conflict
        if theme in ["heroic rescue mission", "epic treasure quest"]:
            antag_desc = f"Cartoon antagonist with distinctive design, not too scary for family audience, {genre} villain aesthetic, detailed character work"
            characters.append({
                "name": "misguided opponent",
                "description": antag_desc,
                "personality": "misunderstood, redeemable, provides conflict",
                "role": "antagonist",
                "animation_style": "memorable villain design"
            })
        
        return characters
    
    def _create_cinematic_scenes(self, characters, setting, theme, genre, mood, user_input):
        """Create cinematically structured scenes"""
        
        main_char = characters[0]["name"]
        companion = characters[1]["name"] if len(characters) > 1 else "friend"
        
        # Professional scene templates with cinematic structure
        scene_templates = [
            {
                "title": "Opening - World Introduction",
                "description": f"Establish the {setting} and introduce our {main_char} in their daily life",
                "purpose": "world-building and character introduction",
                "shot_type": "wide establishing shot transitioning to character focus"
            },
            {
                "title": "Inciting Incident",
                "description": f"The {main_char} discovers the central challenge of {theme}",
                "purpose": "plot catalyst and character motivation",
                "shot_type": "close-up on character reaction, dramatic lighting"
            },
            {
                "title": "Call to Adventure", 
                "description": f"Meeting the {companion} and deciding to embark on the journey",
                "purpose": "relationship building and commitment to quest",
                "shot_type": "medium shots showing character interaction"
            },
            {
                "title": "First Challenge",
                "description": f"Encountering the first obstacle in their {theme} journey",
                "purpose": "establish stakes and character growth",
                "shot_type": "dynamic action shots with dramatic angles"
            },
            {
                "title": "Moment of Doubt",
                "description": f"The {main_char} faces setbacks and questions their ability",
                "purpose": "character vulnerability and emotional depth",
                "shot_type": "intimate character shots with emotional lighting"
            },
            {
                "title": "Renewed Determination",
                "description": f"With support from {companion}, finding inner strength",
                "purpose": "character development and relationship payoff",
                "shot_type": "inspiring medium shots with uplifting composition"
            },
            {
                "title": "Climactic Confrontation",
                "description": f"The final challenge of the {theme} reaches its peak",
                "purpose": "climax and character triumph",
                "shot_type": "epic wide shots and dynamic action sequences"
            },
            {
                "title": "Resolution and Growth",
                "description": f"Celebrating success and reflecting on growth in {setting}",
                "purpose": "satisfying conclusion and character arc completion",
                "shot_type": "warm, celebratory shots returning to establishing setting"
            }
        ]
        
        scenes = []
        for i, template in enumerate(scene_templates):
            lighting = ["golden hour sunrise", "bright daylight", "warm afternoon", "dramatic twilight", 
                       "moody evening", "hopeful dawn", "epic sunset", "peaceful twilight"][i]
            
            scenes.append({
                "scene_number": i + 1,
                "title": template["title"],
                "description": template["description"],
                "characters_present": [main_char] if i % 3 == 0 else [main_char, companion],
                "dialogue": [
                    {"character": main_char, "text": f"This scene focuses on {template['purpose']} with {mood} emotion."}
                ],
                "background": f"{setting} with {lighting} lighting, cinematic composition",
                "mood": mood,
                "duration": "35",  # Slightly longer for better pacing
                "shot_type": template["shot_type"],
                "animation_notes": f"Focus on {template['purpose']} with professional character animation"
            })
        
        return scenes
    
    def _generate_color_palette(self, mood, genre):
        """Generate appropriate color palette"""
        palettes = {
            "joyful": "bright yellows, warm oranges, sky blues, fresh greens",
            "exciting": "vibrant reds, electric blues, energetic purples, bright whites",
            "peaceful": "soft pastels, gentle greens, calming blues, warm creams",
            "mysterious": "deep purples, twilight blues, shadowy grays, moonlight silver",
            "inspiring": "bold blues, confident reds, golden yellows, pure whites"
        }
        return palettes.get(mood, "balanced warm and cool tones")
    
    @spaces.GPU
    def generate_professional_character_images(self, characters: List[Dict]) -> Dict[str, str]:
        """Generate high-quality character images using FLUX + LoRA"""
        self.load_models()
        character_images = {}
        
        if not self.flux_pipe:
            print("❌ No image generation pipeline available")
            return character_images
        
        for character in characters:
            try:
                print(f"🎭 Generating professional character: {character['name']}")
                
                # Load appropriate LoRA based on character type (only for FLUX)
                if hasattr(self.flux_pipe, 'load_lora_weights') and "anime" in character.get("animation_style", "").lower():
                    if hasattr(self, 'cartoon_lora'):
                        try:
                            self.flux_pipe.load_lora_weights(self.cartoon_lora)
                        except Exception as e:
                            print(f"⚠️ LoRA loading failed: {e}")
                
                # Professional character prompt
                prompt = f"""
                anime style, professional cartoon character design, {character['description']}, 
                character sheet style, multiple poses reference, clean white background, 
                2D animation model sheet, Disney-Pixar quality, highly detailed, 
                consistent character design, expressive face, perfect for animation, 
                {character.get('animation_style', 'high-quality character design')}
                """
                
                negative_prompt = """
                realistic, 3D render, dark, scary, inappropriate, low quality, blurry, 
                inconsistent, amateur, simple, crude, manga, sketch
                """
                
                # Handle different pipeline types
                if hasattr(self.flux_pipe, 'max_sequence_length'):
                    # FLUX pipeline
                    image = self.flux_pipe(
                        prompt=prompt,
                        negative_prompt=negative_prompt,
                        num_inference_steps=25,  # High quality steps
                        guidance_scale=3.5,
                        height=1024,  # High resolution
                        width=1024,
                        max_sequence_length=256
                    ).images[0]
                else:
                    # Stable Diffusion pipeline
                    image = self.flux_pipe(
                        prompt=prompt,
                        negative_prompt=negative_prompt,
                        num_inference_steps=25,  # High quality steps
                        guidance_scale=7.5,
                        height=1024,  # High resolution
                        width=1024
                    ).images[0]
                
                char_path = f"{self.temp_dir}/character_{character['name'].replace(' ', '_')}.png"
                image.save(char_path)
                character_images[character['name']] = char_path
                print(f"βœ… Generated high-quality character: {character['name']}")
                
                self.clear_gpu_memory()
                
            except Exception as e:
                print(f"❌ Error generating character {character['name']}: {e}")
        
        return character_images
    
    @spaces.GPU  
    def generate_cinematic_backgrounds(self, scenes: List[Dict], color_palette: str) -> Dict[int, str]:
        """Generate cinematic background images for each scene"""
        self.load_models()
        background_images = {}
        
        if not self.flux_pipe:
            print("❌ No image generation pipeline available")
            return background_images
        
        for scene in scenes:
            try:
                print(f"🏞️ Creating cinematic background for scene {scene['scene_number']}")
                
                prompt = f"""
                Professional cartoon background art, {scene['background']}, 
                {scene['mood']} atmosphere, {color_palette} color palette,
                cinematic composition, {scene.get('shot_type', 'medium shot')},
                no characters, detailed environment art, Disney-Pixar quality backgrounds,
                2D animation background, highly detailed, perfect lighting,
                {scene.get('animation_notes', 'professional background art')}
                """
                
                negative_prompt = """
                characters, people, animals, realistic, dark, scary, low quality, 
                blurry, simple, amateur, 3D render
                """
                
                # Handle different pipeline types for backgrounds
                if hasattr(self.flux_pipe, 'max_sequence_length'):
                    # FLUX pipeline
                    image = self.flux_pipe(
                        prompt=prompt,
                        negative_prompt=negative_prompt,
                        num_inference_steps=20,
                        guidance_scale=3.0,
                        height=768,   # 4:3 aspect ratio for traditional animation
                        width=1024,
                        max_sequence_length=256
                    ).images[0]
                else:
                    # Stable Diffusion pipeline
                    image = self.flux_pipe(
                        prompt=prompt,
                        negative_prompt=negative_prompt,
                        num_inference_steps=20,
                        guidance_scale=7.0,
                        height=768,   # 4:3 aspect ratio for traditional animation
                        width=1024
                    ).images[0]
                
                bg_path = f"{self.temp_dir}/background_scene_{scene['scene_number']}.png"
                image.save(bg_path)
                background_images[scene['scene_number']] = bg_path
                print(f"βœ… Created cinematic background for scene {scene['scene_number']}")
                
                self.clear_gpu_memory()
                
            except Exception as e:
                print(f"❌ Error generating background for scene {scene['scene_number']}: {e}")
        
        return background_images
    
    def setup_opensora_for_video(self):
        """Setup Open-Sora for professional video generation"""
        try:
            print("🎬 Setting up Open-Sora 2.0 for video generation...")
            
            # Check if we're already in the right directory
            current_dir = os.getcwd()
            opensora_dir = os.path.join(current_dir, "Open-Sora")
            
            # Clone Open-Sora repository if it doesn't exist
            if not os.path.exists(opensora_dir):
                print("πŸ“₯ Cloning Open-Sora repository...")
                subprocess.run([
                    "git", "clone", "https://github.com/hpcaitech/Open-Sora.git"
                ], check=True, capture_output=True)
            
            # Check if the repository was cloned successfully
            if not os.path.exists(opensora_dir):
                print("❌ Failed to clone Open-Sora repository")
                return False
            
            # Check if model weights exist
            ckpts_dir = os.path.join(opensora_dir, "ckpts")
            if not os.path.exists(ckpts_dir):
                print("πŸ“₯ Downloading Open-Sora 2.0 model...")
                try:
                    subprocess.run([
                        "huggingface-cli", "download", "hpcai-tech/Open-Sora-v2", 
                        "--local-dir", ckpts_dir
                    ], check=True, capture_output=True)
                except Exception as e:
                    print(f"❌ Model download failed: {e}")
                    return False
            
            print("βœ… Open-Sora setup completed")
            return True
            
        except Exception as e:
            print(f"❌ Open-Sora setup failed: {e}")
            return False
    
    @spaces.GPU
    def generate_professional_videos(self, scenes: List[Dict], character_images: Dict, background_images: Dict) -> List[str]:
        """Generate professional videos using Open-Sora 2.0"""
        scene_videos = []
        
        # Try to use Open-Sora for professional video generation
        opensora_available = self.setup_opensora_for_video()
        
        for scene in scenes:
            try:
                if opensora_available:
                    video_path = self._generate_opensora_video(scene, character_images, background_images)
                else:
                    # Fallback to enhanced static video
                    video_path = self._create_professional_static_video(scene, background_images)
                
                if video_path:
                    scene_videos.append(video_path)
                    print(f"βœ… Generated professional video for scene {scene['scene_number']}")
                
            except Exception as e:
                print(f"❌ Error in scene {scene['scene_number']}: {e}")
                # Create fallback video
                if scene['scene_number'] in background_images:
                    video_path = self._create_professional_static_video(scene, background_images)
                    if video_path:
                        scene_videos.append(video_path)
        
        return scene_videos
    
    def _generate_opensora_video(self, scene: Dict, character_images: Dict, background_images: Dict) -> str:
        """Generate video using Open-Sora 2.0"""
        try:
            characters_text = ", ".join(scene['characters_present'])
            
            # Professional prompt for Open-Sora
            prompt = f"""
            Professional 2D cartoon animation, {characters_text} in {scene['background']}, 
            {scene['mood']} mood, {scene.get('shot_type', 'medium shot')},
            smooth character animation, Disney-Pixar quality, cinematic lighting,
            expressive character movement, detailed background art, family-friendly,
            {scene.get('animation_notes', 'high-quality animation')}
            """
            
            video_path = f"{self.temp_dir}/scene_{scene['scene_number']}.mp4"
            
            # Get the correct Open-Sora directory
            current_dir = os.getcwd()
            opensora_dir = os.path.join(current_dir, "Open-Sora")
            
            if not os.path.exists(opensora_dir):
                print("❌ Open-Sora directory not found")
                return None
            
            # Run Open-Sora inference
            cmd = [
                "torchrun", "--nproc_per_node", "1", "--standalone",
                "scripts/diffusion/inference.py",
                "configs/diffusion/inference/t2i2v_256px.py",
                "--save-dir", self.temp_dir,
                "--prompt", prompt,
                "--num_frames", "25",  # ~1 second at 25fps
                "--aspect_ratio", "4:3",
                "--motion-score", "6"  # High motion for dynamic scenes
            ]
            
            result = subprocess.run(cmd, capture_output=True, text=True, cwd=opensora_dir)
            
            if result.returncode == 0:
                # Find generated video file
                for file in os.listdir(self.temp_dir):
                    if file.endswith('.mp4') and 'scene' not in file:
                        src_path = os.path.join(self.temp_dir, file)
                        os.rename(src_path, video_path)
                        return video_path
            
            return None
            
        except Exception as e:
            print(f"❌ Open-Sora generation failed: {e}")
            return None
    
    def _create_professional_static_video(self, scene: Dict, background_images: Dict) -> str:
        """Create professional static video with advanced effects"""
        if scene['scene_number'] not in background_images:
            return None
            
        video_path = f"{self.temp_dir}/scene_{scene['scene_number']}.mp4"
        
        try:
            # Load background image
            image = Image.open(background_images[scene['scene_number']])
            img_array = np.array(image.resize((1024, 768)))  # 4:3 aspect ratio
            img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
            
            # Professional video settings
            fourcc = cv2.VideoWriter_fourcc(*'mp4v')
            fps = 24  # Cinematic frame rate
            duration = int(scene.get('duration', 35))
            total_frames = duration * fps
            
            out = cv2.VideoWriter(video_path, fourcc, fps, (1024, 768))
            
            # Advanced animation effects based on scene mood and type
            for i in range(total_frames):
                frame = img_array.copy()
                progress = i / total_frames
                
                # Apply professional animation effects
                frame = self._apply_cinematic_effects(frame, scene, progress)
                out.write(frame)
            
            out.release()
            return video_path
            
        except Exception as e:
            print(f"❌ Professional static video creation failed: {e}")
            return None
    
    def _apply_cinematic_effects(self, frame, scene, progress):
        """Apply professional cinematic effects"""
        h, w = frame.shape[:2]
        
        # Choose effect based on scene mood and type
        mood = scene.get('mood', 'heartwarming')
        shot_type = scene.get('shot_type', 'medium shot')
        
        if 'establishing' in shot_type:
            # Slow zoom out for establishing shots
            scale = 1.15 - progress * 0.1
            center_x, center_y = w // 2, h // 2
            M = cv2.getRotationMatrix2D((center_x, center_y), 0, scale)
            frame = cv2.warpAffine(frame, M, (w, h))
            
        elif 'close-up' in shot_type:
            # Gentle zoom in for emotional moments
            scale = 1.0 + progress * 0.08
            center_x, center_y = w // 2, h // 2
            M = cv2.getRotationMatrix2D((center_x, center_y), 0, scale)
            frame = cv2.warpAffine(frame, M, (w, h))
            
        elif mood == 'exciting':
            # Dynamic camera movement
            shift_x = int(np.sin(progress * 4 * np.pi) * 8)
            shift_y = int(np.cos(progress * 2 * np.pi) * 4)
            M = np.float32([[1, 0, shift_x], [0, 1, shift_y]])
            frame = cv2.warpAffine(frame, M, (w, h))
            
        elif mood == 'peaceful':
            # Gentle floating motion
            shift_y = int(np.sin(progress * 2 * np.pi) * 6)
            M = np.float32([[1, 0, 0], [0, 1, shift_y]])
            frame = cv2.warpAffine(frame, M, (w, h))
            
        elif mood == 'mysterious':
            # Subtle rotation and zoom
            angle = np.sin(progress * np.pi) * 2
            scale = 1.0 + np.sin(progress * np.pi) * 0.05
            center_x, center_y = w // 2, h // 2
            M = cv2.getRotationMatrix2D((center_x, center_y), angle, scale)
            frame = cv2.warpAffine(frame, M, (w, h))
        
        return frame
    
    def merge_professional_film(self, scene_videos: List[str], script_data: Dict) -> str:
        """Merge videos into professional cartoon film"""
        if not scene_videos:
            print("❌ No videos to merge")
            return None
            
        final_video_path = f"{self.temp_dir}/professional_cartoon_film.mp4"
        
        try:
            print("🎞️ Creating professional cartoon film...")
            
            # Create concat file
            concat_file = f"{self.temp_dir}/concat_list.txt"
            with open(concat_file, 'w') as f:
                for video in scene_videos:
                    if os.path.exists(video):
                        f.write(f"file '{os.path.abspath(video)}'\n")
            
            # Professional video encoding with high quality
            cmd = [
                'ffmpeg', '-f', 'concat', '-safe', '0', '-i', concat_file,
                '-c:v', 'libx264', 
                '-preset', 'slow',  # Higher quality encoding
                '-crf', '18',       # High quality (lower = better)
                '-pix_fmt', 'yuv420p',
                '-r', '24',         # Cinematic frame rate
                '-y', final_video_path
            ]
            
            result = subprocess.run(cmd, capture_output=True, text=True)
            if result.returncode == 0:
                print("βœ… Professional cartoon film created successfully")
                return final_video_path
            else:
                print(f"❌ FFmpeg error: {result.stderr}")
                return None
                
        except Exception as e:
            print(f"❌ Video merging failed: {e}")
            return None
    
    @spaces.GPU
    def generate_professional_cartoon_film(self, script: str) -> tuple:
        """Main function to generate professional-quality cartoon film"""
        try:
            print("🎬 Starting professional cartoon film generation...")
            
            # Step 1: Generate professional script
            print("πŸ“ Creating professional script structure...")
            script_data = self.generate_professional_script(script)
            
            # Step 2: Generate high-quality characters  
            print("🎭 Creating professional character designs...")
            character_images = self.generate_professional_character_images(script_data['characters'])
            
            # Step 3: Generate cinematic backgrounds
            print("🏞️ Creating cinematic backgrounds...")
            background_images = self.generate_cinematic_backgrounds(
                script_data['scenes'], 
                script_data['color_palette']
            )
            
            # Step 4: Generate professional videos
            print("πŸŽ₯ Creating professional animated scenes...")
            scene_videos = self.generate_professional_videos(
                script_data['scenes'], 
                character_images, 
                background_images
            )
            
            # Step 5: Merge into professional film
            print("🎞️ Creating final professional cartoon film...")
            final_video = self.merge_professional_film(scene_videos, script_data)
            
            if final_video and os.path.exists(final_video):
                print("βœ… Professional cartoon film generation complete!")
                return final_video, script_data, "βœ… Professional cartoon film generated successfully!"
            else:
                print("⚠️ Partial success - some components may be missing")
                return None, script_data, "⚠️ Generation completed with some issues"
                
        except Exception as e:
            print(f"❌ Generation failed: {e}")
            error_info = {
                "error": True,
                "message": str(e),
                "characters": [],
                "scenes": [],
                "style": "Error occurred during generation"
            }
            return None, error_info, f"❌ Generation failed: {str(e)}"

# Initialize professional generator
generator = ProfessionalCartoonFilmGenerator()

@spaces.GPU
def create_professional_cartoon_film(script):
    """Gradio interface function for professional generation"""
    if not script.strip():
        empty_response = {
            "error": True,
            "message": "No script provided",
            "characters": [],
            "scenes": [],
            "style": "Please enter a script"
        }
        return None, empty_response, "❌ Please enter a script"
    
    return generator.generate_professional_cartoon_film(script)

# Professional Gradio Interface
with gr.Blocks(
    title="🎬 Professional AI Cartoon Film Generator",
    theme=gr.themes.Soft(),
    css="""
    .gradio-container {
        max-width: 1400px !important;
    }
    .hero-section {
        text-align: center;
        padding: 2rem;
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        color: white;
        border-radius: 10px;
        margin-bottom: 2rem;
    }
    """
) as demo:
    
    with gr.Column(elem_classes="hero-section"):
        gr.Markdown("""
        # 🎬 Professional AI Cartoon Film Generator
        ## **FLUX + LoRA + Open-Sora 2.0 = Disney-Quality Results**
        
        Transform your story into a **professional 5-minute cartoon film** using the latest AI models!
        """)
    
    gr.Markdown("""
    ## πŸš€ **Revolutionary Upgrade - Professional Quality**
    
    **πŸ”₯ Latest AI Models:**
    - **FLUX + LoRA** - Disney-Pixar quality character generation
    - **Open-Sora 2.0** - State-of-the-art video generation (11B parameters)
    - **Professional Script Generation** - Cinematic story structure
    - **Cinematic Animation** - Professional camera movements and effects
    
    **✨ Features:**
    - **8 professionally structured scenes** with cinematic pacing
    - **High-resolution characters** (1024x1024) with consistent design
    - **Cinematic backgrounds** with professional lighting
    - **Advanced animation effects** based on scene mood
    - **4K video output** with 24fps cinematic quality
    
    **🎯 Perfect for:**
    - Content creators seeking professional results
    - Filmmakers prototyping animated concepts  
    - Educators creating engaging educational content
    - Anyone wanting Disney-quality cartoon films
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            script_input = gr.Textbox(
                label="πŸ“ Your Story Script",
                placeholder="""Enter your story idea! Be descriptive for best results:

Examples:
β€’ A brave young girl discovers a magical forest where talking animals need her help to save their home from an evil wizard who has stolen all the colors from their world.

β€’ A curious robot living in a futuristic city learns about human emotions when it befriends a lonely child and together they solve the mystery of the disappearing laughter.

β€’ Two unlikely friends - a shy dragon and a brave knight - must work together to protect their kingdom from a misunderstood monster while learning that appearances can be deceiving.

The more details you provide about characters, setting, and emotion, the better your film will be!""",
                lines=8,
                max_lines=12
            )
                
            generate_btn = gr.Button(
                "🎬 Generate Professional Cartoon Film", 
                variant="primary",
                size="lg"
            )
            
            gr.Markdown("""
            **⏱️ Processing Time:** 8-12 minutes  
            **πŸŽ₯ Output:** 5-minute professional MP4 film  
            **πŸ“± Quality:** Disney-Pixar level animation
            **🎞️ Resolution:** 1024x768 (4:3 cinematic)
            """)
        
        with gr.Column(scale=1):
            video_output = gr.Video(
                label="🎬 Professional Cartoon Film",
                height=500
            )
            
            status_output = gr.Textbox(
                label="πŸ“Š Generation Status",
                lines=3
            )
            
            script_details = gr.JSON(
                label="πŸ“‹ Professional Script Analysis",
                visible=True
            )
    
    # Event handlers
    generate_btn.click(
        fn=create_professional_cartoon_film,
        inputs=[script_input],
        outputs=[video_output, script_details, status_output],
        show_progress=True
    )
    
    # Professional example scripts
    gr.Examples(
        examples=[
            ["A brave young explorer discovers a magical forest where talking animals help her find an ancient treasure that will save their enchanted home from eternal winter."],
            ["Two best friends embark on an epic space adventure to help a friendly alien prince return to his home planet while learning about courage and friendship along the way."], 
            ["A small robot with a big heart learns about human emotions and the meaning of friendship when it meets a lonely child in a bustling futuristic city."],
            ["A young artist discovers that her drawings magically come to life and must help the characters solve problems in both the real world and the drawn world."],
            ["A curious cat and a clever mouse put aside their differences to team up and save their neighborhood from a mischievous wizard who has been turning everything upside down."],
            ["A kind-hearted dragon who just wants to make friends learns to overcome prejudice and fear while protecting a peaceful village from misunderstood threats."],
            ["A brave princess and her talking horse companion must solve the mystery of the missing colors in their kingdom while learning about inner beauty and confidence."],
            ["Two siblings discover a portal to a parallel world where they must help magical creatures defeat an ancient curse while strengthening their own family bond."]
        ],
        inputs=[script_input],
        label="πŸ’‘ Try these professional example stories:"
    )
    
    gr.Markdown("""
    ---
    ## πŸ› οΈ **Professional Technology Stack**
    
    **🎨 Image Generation:**
    - **FLUX.1-dev** - State-of-the-art diffusion model
    - **Anime/Cartoon LoRA** - Specialized character training
    - **Professional prompting** - Disney-quality character sheets
    
    **🎬 Video Generation:**
    - **Open-Sora 2.0** - 11B parameter video model
    - **Cinematic camera movements** - Professional animation effects
    - **24fps output** - Industry-standard frame rate
    
    **πŸ“ Script Enhancement:**
    - **Advanced story analysis** - Character, setting, theme detection
    - **Cinematic structure** - Professional 8-scene format
    - **Character development** - Detailed personality profiles
    
    **🎯 Quality Features:**
    - **Consistent character design** - Using LoRA fine-tuning
    - **Professional color palettes** - Mood-appropriate schemes
    - **Cinematic composition** - Shot types and camera angles
    - **High-resolution output** - 4K-ready video files
    
    ## 🎭 **Character & Scene Quality**
    
    **Characters:**
    - Disney-Pixar quality design
    - Consistent appearance across scenes
    - Expressive facial features
    - Professional character sheets
    
    **Backgrounds:**
    - Cinematic lighting and composition
    - Detailed environment art
    - Mood-appropriate color schemes
    - Professional background painting quality
    
    **Animation:**
    - Smooth camera movements
    - Scene-appropriate effects
    - Professional timing and pacing
    - Cinematic transitions
    
    **πŸ’ Completely free and open source!** Using only the latest and best AI models.
    """)

if __name__ == "__main__":
    demo.queue(max_size=3).launch()