tonic-discharge-guard / callbackmanager.py
MiChaelinzo's picture
Update callbackmanager.py (#1)
12a5b40 verified
raw
history blame
24.7 kB
import gradio as gr
from meldrx import MeldRxAPI
import json
import os
import tempfile
from datetime import datetime
import traceback
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Import PDF utilities
from pdfutils import PDFGenerator, generate_discharge_summary
# Import necessary libraries for new file types and AI analysis functions
import pydicom # For DICOM
import hl7 # For HL7
from xml.etree import ElementTree # For XML and CCDA
from pypdf import PdfReader # For PDF
import csv # For CSV
# Assuming your AI analysis functions are in the same script or imported
# For now, let's define placeholder AI analysis functions for Gradio context
def analyze_dicom_file_with_ai(dicom_file):
return "DICOM Analysis Report (Placeholder - Real AI integration needed)"
def analyze_hl7_file_with_ai(hl7_file):
return "HL7 Analysis Report (Placeholder - Real AI integration needed)"
def analyze_cda_xml_file_with_ai(cda_xml_file):
return "CCDA/XML Analysis Report (Placeholder - Real AI integration needed)"
def analyze_pdf_file_with_ai(pdf_file):
return "PDF Analysis Report (Placeholder - Real AI integration needed)"
def analyze_csv_file_with_ai(csv_file):
return "CSV Analysis Report (Placeholder - Real AI integration needed)"
class CallbackManager:
def __init__(self, redirect_uri: str, client_secret: str = None):
client_id = os.getenv("APPID")
if not client_id:
raise ValueError("APPID environment variable not set.")
workspace_id = os.getenv("WORKSPACE_URL")
if not workspace_id:
raise ValueError("WORKSPACE_URL environment variable not set.")
self.api = MeldRxAPI(client_id, client_secret, workspace_id, redirect_uri)
self.auth_code = None
self.access_token = None
def get_auth_url(self) -> str:
return self.api.get_authorization_url()
def set_auth_code(self, code: str) -> str:
self.auth_code = code
if self.api.authenticate_with_code(code):
self.access_token = self.api.access_token
return f"Authentication successful! Access Token: {self.access_token[:10]}... (truncated)"
return "Authentication failed. Please check the code."
def get_patient_data(self) -> str:
"""Fetch patient data from MeldRx"""
try:
if not self.access_token:
logger.warning("Not authenticated when getting patient data")
return "Not authenticated. Please provide a valid authorization code first."
# For demo purposes, if there's no actual API connected, return mock data
# Remove this in production and use the real API call
if not hasattr(self.api, 'get_patients') or self.api.get_patients is None:
logger.info("Using mock patient data (no API connection)")
# Return mock FHIR bundle with patient data
mock_data = {
"resourceType": "Bundle",
"type": "searchset",
"total": 2,
"link": [],
"entry": [
{
"resource": {
"resourceType": "Patient",
"id": "patient1",
"name": [
{
"use": "official",
"family": "Smith",
"given": ["John"]
}
],
"gender": "male",
"birthDate": "1970-01-01",
"address": [
{
"city": "Boston",
"state": "MA",
"postalCode": "02108"
}
]
}
},
{
"resource": {
"resourceType": "Patient",
"id": "patient2",
"name": [
{
"use": "official",
"family": "Johnson",
"given": ["Jane"]
}
],
"gender": "female",
"birthDate": "1985-05-15",
"address": [
{
"city": "Cambridge",
"state": "MA",
"postalCode": "02139"
}
]
}
}
]
}
return json.dumps(mock_data, indent=2)
# Real implementation with API call
logger.info("Calling Meldrx API to get patients")
patients = self.api.get_patients()
if patients is not None:
return json.dumps(patients, indent=2) if patients else "No patient data returned."
return "Failed to retrieve patient data."
except Exception as e:
error_msg = f"Error in get_patient_data: {str(e)}"
logger.error(error_msg)
return f"Error retrieving patient data: {str(e)}"
def get_patient_documents(self, patient_id: str = None):
"""Fetch patient documents from MeldRx"""
if not self.access_token:
return "Not authenticated. Please provide a valid authorization code first."
try:
# This would call the actual MeldRx API to get documents for a specific patient
# For demonstration, we'll return mock document data
return [
{
"doc_id": "doc123",
"type": "clinical_note",
"date": "2023-01-16",
"author": "Dr. Sample Doctor",
"content": "Patient presented with symptoms of respiratory distress...",
},
{
"doc_id": "doc124",
"type": "lab_result",
"date": "2023-01-17",
"author": "Lab System",
"content": "CBC results: WBC 7.5, RBC 4.2, Hgb 14.1...",
}
]
except Exception as e:
return f"Error retrieving patient documents: {str(e)}"
def display_form(
first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code,
doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address,
doctor_city, doctor_state, doctor_zip,
admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death,
diagnosis, procedures, medications, preparer_name, preparer_job_title
):
form = f"""
**Patient Discharge Form**
- Name: {first_name} {middle_initial} {last_name}
- Date of Birth: {dob}, Age: {age}, Sex: {sex}
- Address: {address}, {city}, {state}, {zip_code}
- Doctor: {doctor_first_name} {doctor_middle_initial} {doctor_last_name}
- Hospital/Clinic: {hospital_name}
- Doctor Address: {doctor_address}, {doctor_city}, {doctor_state}, {doctor_zip}
- Admission Date: {admission_date}, Source: {referral_source}, Method: {admission_method}
- Discharge Date: {discharge_date}, Reason: {discharge_reason}
- Date of Death: {date_of_death}
- Diagnosis: {diagnosis}
- Procedures: {procedures}
- Medications: {medications}
- Prepared By: {preparer_name}, {preparer_job_title}
"""
return form
def generate_pdf_from_form(
first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code,
doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address,
doctor_city, doctor_state, doctor_zip,
admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death,
diagnosis, procedures, medications, preparer_name, preparer_job_title
):
"""Generate a PDF discharge form using the provided data"""
# Create PDF generator
pdf_gen = PDFGenerator()
# Format data for PDF generation
patient_info = {
"first_name": first_name,
"last_name": last_name,
"dob": dob,
"age": age,
"sex": sex,
"mobile": "", # Not collected in the form
"address": address,
"city": city,
"state": state,
"zip": zip_code
}
discharge_info = {
"date_of_admission": admission_date,
"date_of_discharge": discharge_date,
"source_of_admission": referral_source,
"mode_of_admission": admission_method,
"discharge_against_advice": "Yes" if discharge_reason == "Discharge Against Advice" else "No"
}
diagnosis_info = {
"diagnosis": diagnosis,
"operation_procedure": procedures,
"treatment": "", # Not collected in the form
"follow_up": "" # Not collected in the form
}
medication_info = {
"medications": [medications] if medications else [],
"instructions": "" # Not collected in the form
}
prepared_by = {
"name": preparer_name,
"title": preparer_job_title,
"signature": "" # Not collected in the form
}
# Generate PDF
pdf_buffer = pdf_gen.generate_discharge_form(
patient_info,
discharge_info,
diagnosis_info,
medication_info,
prepared_by
)
# Create temporary file to save the PDF
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.pdf')
temp_file.write(pdf_buffer.read())
temp_file_path = temp_file.name
temp_file.close()
return temp_file_path
def generate_pdf_from_meldrx(patient_data):
"""Generate a PDF using patient data from MeldRx"""
if isinstance(patient_data, str):
# If it's a string (error message or JSON string), try to parse it
try:
patient_data = json.loads(patient_data)
except:
return None, "Invalid patient data format"
if not patient_data:
return None, "No patient data available"
try:
# For demonstration, we'll use the first patient in the list if it's a list
if isinstance(patient_data, list) and len(patient_data):
patient = patient_data[0]
else:
patient = patient_data
# Extract patient info
patient_info = {
"name": f"{patient.get('name', {}).get('given', [''])[0]} {patient.get('name', {}).get('family', '')}",
"dob": patient.get('birthDate', 'Unknown'),
"patient_id": patient.get('id', 'Unknown'),
"admission_date": datetime.now().strftime("%Y-%m-%d"), # Mock data
"physician": "Dr. Provider" # Mock data
}
# Mock LLM-generated content
llm_content = {
"diagnosis": "Diagnosis information would be generated by LLM",
"treatment": "Treatment summary would be generated by LLM",
"medications": "Medication list would be generated by LLM",
"follow_up": "Follow-up instructions would be generated by LLM",
"special_instructions": "Special instructions would be generated by LLM"
}
# Create discharge summary
output_dir = tempfile.mkdtemp()
pdf_path = generate_discharge_summary(patient_info, llm_content, output_dir)
return pdf_path, "PDF generated successfully"
except Exception as e:
return None, f"Error generating PDF: {str(e)}"
def generate_discharge_paper_one_click():
"""One-click function to fetch patient data and generate discharge paper."""
patient_data_str = CALLBACK_MANAGER.get_patient_data()
if patient_data_str.startswith("Not authenticated") or patient_data_str.startswith("Failed") or patient_data_str.startswith("Error"):
return None, patient_data_str # Return error message if authentication or data fetch fails
try:
patient_data = json.loads(patient_data_str)
pdf_path, status_message = generate_pdf_from_meldrx(patient_data)
if pdf_path:
return pdf_path, status_message
else:
return None, status_message # Return status message if PDF generation fails
except json.JSONDecodeError:
return None, "Error: Patient data is not in valid JSON format."
except Exception as e:
return None, f"Error during discharge paper generation: {str(e)}"
# Create a simplified interface to avoid complex component interactions
CALLBACK_MANAGER = CallbackManager(
redirect_uri="https://multitransformer-discharge-guard.hf.space/callback",
client_secret=None
)
# Create the UI
with gr.Blocks() as demo:
gr.Markdown("# Patient Discharge Form with MeldRx & Medical File Analysis")
with gr.Tab("Authenticate with MeldRx"):
gr.Markdown("## SMART on FHIR Authentication")
auth_url_output = gr.Textbox(label="Authorization URL", value=CALLBACK_MANAGER.get_auth_url(), interactive=False)
gr.Markdown("Copy the URL above, open it in a browser, log in, and paste the 'code' from the redirect URL below.")
auth_code_input = gr.Textbox(label="Authorization Code")
auth_submit = gr.Button("Submit Code")
auth_result = gr.Textbox(label="Authentication Result")
patient_data_button = gr.Button("Fetch Patient Data")
patient_data_output = gr.Textbox(label="Patient Data", lines=10)
# Add button to generate PDF from MeldRx data
meldrx_pdf_button = gr.Button("Generate PDF from MeldRx Data")
meldrx_pdf_status = gr.Textbox(label="PDF Generation Status")
meldrx_pdf_download = gr.File(label="Download Generated PDF")
auth_submit.click(fn=CALLBACK_MANAGER.set_auth_code, inputs=auth_code_input, outputs=auth_result)
with gr.Tab("Patient Dashboard"):
gr.Markdown("## Patient Data")
dashboard_output = gr.HTML("<p>Fetch patient data from the Authentication tab first.</p>")
refresh_btn = gr.Button("Refresh Data")
# Simple function to update dashboard based on fetched data
def update_dashboard():
try:
data = CALLBACK_MANAGER.get_patient_data()
if data.startswith("Not authenticated") or data.startswith("Failed") or data.startswith("Error"):
return f"<p>{data}</p>"
try:
# Parse the data
patients_data = json.loads(data)
patients = []
# Extract patients from bundle
for entry in patients_data.get("entry", []):
resource = entry.get("resource", {})
if resource.get("resourceType") == "Patient":
patients.append(resource)
# Generate HTML for each patient
html = "<h3>Patients</h3>"
for patient in patients:
# Extract name
name = patient.get("name", [{}])[0]
given = " ".join(name.get("given", ["Unknown"]))
family = name.get("family", "Unknown")
# Extract other details
gender = patient.get("gender", "unknown").capitalize()
birth_date = patient.get("birthDate", "Unknown")
# Generate HTML card
html += f"""
<div style="border: 1px solid #ddd; padding: 10px; margin: 10px 0; border-radius: 5px;">
<h4>{given} {family}</h4>
<p><strong>Gender:</strong> {gender}</p>
<p><strong>Birth Date:</strong> {birth_date}</p>
<p><strong>ID:</strong> {patient.get("id", "Unknown")}</p>
</div>
"""
return html
except Exception as e:
return f"<p>Error parsing patient data: {str(e)}</p>"
except Exception as e:
return f"<p>Error fetching patient data: {str(e)}</p>"
with gr.Tab("Discharge Form"):
gr.Markdown("## Patient Details")
with gr.Row():
first_name = gr.Textbox(label="First Name")
last_name = gr.Textbox(label="Last Name")
middle_initial = gr.Textbox(label="Middle Initial")
with gr.Row():
dob = gr.Textbox(label="Date of Birth")
age = gr.Textbox(label="Age")
sex = gr.Textbox(label="Sex")
address = gr.Textbox(label="Address")
with gr.Row():
city = gr.Textbox(label="City")
state = gr.Textbox(label="State")
zip_code = gr.Textbox(label="Zip Code")
gr.Markdown("## Primary Healthcare Professional Details")
with gr.Row():
doctor_first_name = gr.Textbox(label="Doctor's First Name")
doctor_last_name = gr.Textbox(label="Doctor's Last Name")
doctor_middle_initial = gr.Textbox(label="Middle Initial")
hospital_name = gr.Textbox(label="Hospital/Clinic Name")
doctor_address = gr.Textbox(label="Address")
with gr.Row():
doctor_city = gr.Textbox(label="City")
doctor_state = gr.Textbox(label="State")
doctor_zip = gr.Textbox(label="Zip Code")
gr.Markdown("## Admission and Discharge Details")
with gr.Row():
admission_date = gr.Textbox(label="Date of Admission")
referral_source = gr.Textbox(label="Source of Referral")
admission_method = gr.Textbox(label="Method of Admission")
with gr.Row():
discharge_date = gr.Textbox(label="Date of Discharge")
discharge_reason = gr.Radio(["Treated", "Transferred", "Discharge Against Advice", "Patient Died"], label="Discharge Reason")
date_of_death = gr.Textbox(label="Date of Death (if applicable)")
gr.Markdown("## Diagnosis & Procedures")
diagnosis = gr.Textbox(label="Diagnosis")
procedures = gr.Textbox(label="Operation & Procedures")
gr.Markdown("## Medication Details")
medications = gr.Textbox(label="Medication on Discharge")
gr.Markdown("## Prepared By")
with gr.Row():
preparer_name = gr.Textbox(label="Name")
preparer_job_title = gr.Textbox(label="Job Title")
# Add buttons for both display form and generate PDF
with gr.Row():
submit_display = gr.Button("Display Form")
submit_pdf = gr.Button("Generate PDF")
# Output areas
form_output = gr.Markdown()
pdf_output = gr.File(label="Download PDF")
# Connect the display form button
submit_display.click(
display_form,
inputs=[
first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code,
doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address,
doctor_city, doctor_state, doctor_zip,
admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death,
diagnosis, procedures, medications, preparer_name, preparer_job_title
],
outputs=form_output
)
# Connect the generate PDF button
submit_pdf.click(
generate_pdf_from_form,
inputs=[
first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code,
doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address,
doctor_city, doctor_state, doctor_zip,
admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death,
diagnosis, procedures, medications, preparer_name, preparer_job_title
],
outputs=pdf_output
)
with gr.Tab("Medical File Analysis"):
gr.Markdown("## Analyze Medical Files with DocuNexus AI")
with gr.Column():
dicom_file = gr.File(file_types=['.dcm'], label="Upload DICOM File (.dcm)")
dicom_ai_output = gr.Textbox(label="DICOM Analysis Report", lines=5)
analyze_dicom_button = gr.Button("Analyze DICOM with AI")
hl7_file = gr.File(file_types=['.hl7'], label="Upload HL7 File (.hl7)")
hl7_ai_output = gr.Textbox(label="HL7 Analysis Report", lines=5)
analyze_hl7_button = gr.Button("Analyze HL7 with AI")
xml_file = gr.File(file_types=['.xml'], label="Upload XML File (.xml)")
xml_ai_output = gr.Textbox(label="XML Analysis Report", lines=5)
analyze_xml_button = gr.Button("Analyze XML with AI")
ccda_file = gr.File(file_types=['.xml', '.cda', '.ccd'], label="Upload CCDA File (.xml, .cda, .ccd)")
ccda_ai_output = gr.Textbox(label="CCDA Analysis Report", lines=5)
analyze_ccda_button = gr.Button("Analyze CCDA with AI")
ccd_file = gr.File(file_types=['.ccd'], label="Upload CCD File (.ccd)") # Redundant, as CCDA also handles .ccd, but kept for clarity
ccd_ai_output = gr.Textbox(label="CCD Analysis Report", lines=5) # Redundant
analyze_ccd_button = gr.Button("Analyze CCD with AI") # Redundant
# Connect AI Analysis Buttons (using placeholder functions for now)
analyze_dicom_button.click(
lambda file: analyze_dicom_file_with_ai(file.name) if file else "No DICOM file uploaded",
inputs=dicom_file, outputs=dicom_ai_output
)
analyze_hl7_button.click(
lambda file: analyze_hl7_file_with_ai(file.name) if file else "No HL7 file uploaded",
inputs=hl7_file, outputs=hl7_ai_output
)
analyze_xml_button.click(
lambda file: analyze_cda_xml_file_with_ai(file.name) if file else "No XML file uploaded", # Using CCDA/XML analyzer for generic XML for now
inputs=xml_file, outputs=xml_ai_output
)
analyze_ccda_button.click(
lambda file: analyze_cda_xml_file_with_ai(file.name) if file else "No CCDA file uploaded", # Using CCDA/XML analyzer
inputs=ccda_file, outputs=ccda_ai_output
)
analyze_ccd_button.click( # Redundant button, but kept for UI if needed
lambda file: analyze_cda_xml_file_with_ai(file.name) if file else "No CCD file uploaded", # Using CCDA/XML analyzer
inputs=ccd_file, outputs=ccd_ai_output
)
with gr.Tab("One-Click Discharge Paper"): # New Tab for One-Click Discharge Paper
gr.Markdown("## One-Click Medical Discharge Paper Generation")
one_click_pdf_button = gr.Button("Generate Discharge Paper (One-Click)")
one_click_pdf_status = gr.Textbox(label="Discharge Paper Generation Status")
one_click_pdf_download = gr.File(label="Download Discharge Paper")
one_click_pdf_button.click(
generate_discharge_paper_one_click,
inputs=[],
outputs=[one_click_pdf_download, one_click_pdf_status]
)
# Connect the patient data buttons
patient_data_button.click(
fn=CALLBACK_MANAGER.get_patient_data,
inputs=None,
outputs=patient_data_output
)
# Connect refresh button to update dashboard
refresh_btn.click(
fn=update_dashboard,
inputs=None,
outputs=dashboard_output
)
# Add functionality for PDF generation from MeldRx data
meldrx_pdf_button.click(
fn=generate_pdf_from_meldrx,
inputs=patient_data_output,
outputs=[meldrx_pdf_download, meldrx_pdf_status]
)
# Connect patient data updates to dashboard
patient_data_button.click(
fn=update_dashboard,
inputs=None,
outputs=dashboard_output
)
# Launch with sharing enabled for public access
demo.launch(share=True)