File size: 24,738 Bytes
5372c12 12a5b40 5372c12 efa4352 85e2206 0d70fae 5372c12 85e2206 7f2013e 12a5b40 5372c12 efa4352 3f9dd86 efa4352 f087af0 3f9dd86 efa4352 f087af0 efa4352 5372c12 0d70fae 12a5b40 0d70fae 12a5b40 0d70fae 5372c12 85e2206 12a5b40 85e2206 12a5b40 5372c12 f087af0 5372c12 f087af0 5372c12 f087af0 5372c12 85e2206 12a5b40 85e2206 12a5b40 85e2206 12a5b40 85e2206 12a5b40 85e2206 12a5b40 85e2206 12a5b40 85e2206 12a5b40 85e2206 12a5b40 85e2206 12a5b40 85e2206 12a5b40 85e2206 12a5b40 85e2206 12a5b40 85e2206 12a5b40 85e2206 12a5b40 85e2206 12a5b40 85e2206 12a5b40 85e2206 12a5b40 f201971 5372c12 f087af0 5372c12 f201971 5372c12 12a5b40 5372c12 12a5b40 5372c12 f201971 12a5b40 85e2206 12a5b40 3f9dd86 12a5b40 f201971 12a5b40 85e2206 12a5b40 f201971 12a5b40 f201971 12a5b40 f201971 12a5b40 f201971 12a5b40 f201971 12a5b40 f201971 12a5b40 f201971 12a5b40 5372c12 12a5b40 85e2206 12a5b40 85e2206 12a5b40 85e2206 5372c12 85e2206 12a5b40 85e2206 5372c12 12a5b40 f201971 30cb096 f201971 30cb096 f201971 30cb096 12a5b40 f201971 12a5b40 30cb096 12a5b40 f201971 30cb096 f201971 30cb096 5372c12 f201971 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
import gradio as gr
from meldrx import MeldRxAPI
import json
import os
import tempfile
from datetime import datetime
import traceback
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Import PDF utilities
from pdfutils import PDFGenerator, generate_discharge_summary
# Import necessary libraries for new file types and AI analysis functions
import pydicom # For DICOM
import hl7 # For HL7
from xml.etree import ElementTree # For XML and CCDA
from pypdf import PdfReader # For PDF
import csv # For CSV
# Assuming your AI analysis functions are in the same script or imported
# For now, let's define placeholder AI analysis functions for Gradio context
def analyze_dicom_file_with_ai(dicom_file):
return "DICOM Analysis Report (Placeholder - Real AI integration needed)"
def analyze_hl7_file_with_ai(hl7_file):
return "HL7 Analysis Report (Placeholder - Real AI integration needed)"
def analyze_cda_xml_file_with_ai(cda_xml_file):
return "CCDA/XML Analysis Report (Placeholder - Real AI integration needed)"
def analyze_pdf_file_with_ai(pdf_file):
return "PDF Analysis Report (Placeholder - Real AI integration needed)"
def analyze_csv_file_with_ai(csv_file):
return "CSV Analysis Report (Placeholder - Real AI integration needed)"
class CallbackManager:
def __init__(self, redirect_uri: str, client_secret: str = None):
client_id = os.getenv("APPID")
if not client_id:
raise ValueError("APPID environment variable not set.")
workspace_id = os.getenv("WORKSPACE_URL")
if not workspace_id:
raise ValueError("WORKSPACE_URL environment variable not set.")
self.api = MeldRxAPI(client_id, client_secret, workspace_id, redirect_uri)
self.auth_code = None
self.access_token = None
def get_auth_url(self) -> str:
return self.api.get_authorization_url()
def set_auth_code(self, code: str) -> str:
self.auth_code = code
if self.api.authenticate_with_code(code):
self.access_token = self.api.access_token
return f"Authentication successful! Access Token: {self.access_token[:10]}... (truncated)"
return "Authentication failed. Please check the code."
def get_patient_data(self) -> str:
"""Fetch patient data from MeldRx"""
try:
if not self.access_token:
logger.warning("Not authenticated when getting patient data")
return "Not authenticated. Please provide a valid authorization code first."
# For demo purposes, if there's no actual API connected, return mock data
# Remove this in production and use the real API call
if not hasattr(self.api, 'get_patients') or self.api.get_patients is None:
logger.info("Using mock patient data (no API connection)")
# Return mock FHIR bundle with patient data
mock_data = {
"resourceType": "Bundle",
"type": "searchset",
"total": 2,
"link": [],
"entry": [
{
"resource": {
"resourceType": "Patient",
"id": "patient1",
"name": [
{
"use": "official",
"family": "Smith",
"given": ["John"]
}
],
"gender": "male",
"birthDate": "1970-01-01",
"address": [
{
"city": "Boston",
"state": "MA",
"postalCode": "02108"
}
]
}
},
{
"resource": {
"resourceType": "Patient",
"id": "patient2",
"name": [
{
"use": "official",
"family": "Johnson",
"given": ["Jane"]
}
],
"gender": "female",
"birthDate": "1985-05-15",
"address": [
{
"city": "Cambridge",
"state": "MA",
"postalCode": "02139"
}
]
}
}
]
}
return json.dumps(mock_data, indent=2)
# Real implementation with API call
logger.info("Calling Meldrx API to get patients")
patients = self.api.get_patients()
if patients is not None:
return json.dumps(patients, indent=2) if patients else "No patient data returned."
return "Failed to retrieve patient data."
except Exception as e:
error_msg = f"Error in get_patient_data: {str(e)}"
logger.error(error_msg)
return f"Error retrieving patient data: {str(e)}"
def get_patient_documents(self, patient_id: str = None):
"""Fetch patient documents from MeldRx"""
if not self.access_token:
return "Not authenticated. Please provide a valid authorization code first."
try:
# This would call the actual MeldRx API to get documents for a specific patient
# For demonstration, we'll return mock document data
return [
{
"doc_id": "doc123",
"type": "clinical_note",
"date": "2023-01-16",
"author": "Dr. Sample Doctor",
"content": "Patient presented with symptoms of respiratory distress...",
},
{
"doc_id": "doc124",
"type": "lab_result",
"date": "2023-01-17",
"author": "Lab System",
"content": "CBC results: WBC 7.5, RBC 4.2, Hgb 14.1...",
}
]
except Exception as e:
return f"Error retrieving patient documents: {str(e)}"
def display_form(
first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code,
doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address,
doctor_city, doctor_state, doctor_zip,
admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death,
diagnosis, procedures, medications, preparer_name, preparer_job_title
):
form = f"""
**Patient Discharge Form**
- Name: {first_name} {middle_initial} {last_name}
- Date of Birth: {dob}, Age: {age}, Sex: {sex}
- Address: {address}, {city}, {state}, {zip_code}
- Doctor: {doctor_first_name} {doctor_middle_initial} {doctor_last_name}
- Hospital/Clinic: {hospital_name}
- Doctor Address: {doctor_address}, {doctor_city}, {doctor_state}, {doctor_zip}
- Admission Date: {admission_date}, Source: {referral_source}, Method: {admission_method}
- Discharge Date: {discharge_date}, Reason: {discharge_reason}
- Date of Death: {date_of_death}
- Diagnosis: {diagnosis}
- Procedures: {procedures}
- Medications: {medications}
- Prepared By: {preparer_name}, {preparer_job_title}
"""
return form
def generate_pdf_from_form(
first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code,
doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address,
doctor_city, doctor_state, doctor_zip,
admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death,
diagnosis, procedures, medications, preparer_name, preparer_job_title
):
"""Generate a PDF discharge form using the provided data"""
# Create PDF generator
pdf_gen = PDFGenerator()
# Format data for PDF generation
patient_info = {
"first_name": first_name,
"last_name": last_name,
"dob": dob,
"age": age,
"sex": sex,
"mobile": "", # Not collected in the form
"address": address,
"city": city,
"state": state,
"zip": zip_code
}
discharge_info = {
"date_of_admission": admission_date,
"date_of_discharge": discharge_date,
"source_of_admission": referral_source,
"mode_of_admission": admission_method,
"discharge_against_advice": "Yes" if discharge_reason == "Discharge Against Advice" else "No"
}
diagnosis_info = {
"diagnosis": diagnosis,
"operation_procedure": procedures,
"treatment": "", # Not collected in the form
"follow_up": "" # Not collected in the form
}
medication_info = {
"medications": [medications] if medications else [],
"instructions": "" # Not collected in the form
}
prepared_by = {
"name": preparer_name,
"title": preparer_job_title,
"signature": "" # Not collected in the form
}
# Generate PDF
pdf_buffer = pdf_gen.generate_discharge_form(
patient_info,
discharge_info,
diagnosis_info,
medication_info,
prepared_by
)
# Create temporary file to save the PDF
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.pdf')
temp_file.write(pdf_buffer.read())
temp_file_path = temp_file.name
temp_file.close()
return temp_file_path
def generate_pdf_from_meldrx(patient_data):
"""Generate a PDF using patient data from MeldRx"""
if isinstance(patient_data, str):
# If it's a string (error message or JSON string), try to parse it
try:
patient_data = json.loads(patient_data)
except:
return None, "Invalid patient data format"
if not patient_data:
return None, "No patient data available"
try:
# For demonstration, we'll use the first patient in the list if it's a list
if isinstance(patient_data, list) and len(patient_data):
patient = patient_data[0]
else:
patient = patient_data
# Extract patient info
patient_info = {
"name": f"{patient.get('name', {}).get('given', [''])[0]} {patient.get('name', {}).get('family', '')}",
"dob": patient.get('birthDate', 'Unknown'),
"patient_id": patient.get('id', 'Unknown'),
"admission_date": datetime.now().strftime("%Y-%m-%d"), # Mock data
"physician": "Dr. Provider" # Mock data
}
# Mock LLM-generated content
llm_content = {
"diagnosis": "Diagnosis information would be generated by LLM",
"treatment": "Treatment summary would be generated by LLM",
"medications": "Medication list would be generated by LLM",
"follow_up": "Follow-up instructions would be generated by LLM",
"special_instructions": "Special instructions would be generated by LLM"
}
# Create discharge summary
output_dir = tempfile.mkdtemp()
pdf_path = generate_discharge_summary(patient_info, llm_content, output_dir)
return pdf_path, "PDF generated successfully"
except Exception as e:
return None, f"Error generating PDF: {str(e)}"
def generate_discharge_paper_one_click():
"""One-click function to fetch patient data and generate discharge paper."""
patient_data_str = CALLBACK_MANAGER.get_patient_data()
if patient_data_str.startswith("Not authenticated") or patient_data_str.startswith("Failed") or patient_data_str.startswith("Error"):
return None, patient_data_str # Return error message if authentication or data fetch fails
try:
patient_data = json.loads(patient_data_str)
pdf_path, status_message = generate_pdf_from_meldrx(patient_data)
if pdf_path:
return pdf_path, status_message
else:
return None, status_message # Return status message if PDF generation fails
except json.JSONDecodeError:
return None, "Error: Patient data is not in valid JSON format."
except Exception as e:
return None, f"Error during discharge paper generation: {str(e)}"
# Create a simplified interface to avoid complex component interactions
CALLBACK_MANAGER = CallbackManager(
redirect_uri="https://multitransformer-discharge-guard.hf.space/callback",
client_secret=None
)
# Create the UI
with gr.Blocks() as demo:
gr.Markdown("# Patient Discharge Form with MeldRx & Medical File Analysis")
with gr.Tab("Authenticate with MeldRx"):
gr.Markdown("## SMART on FHIR Authentication")
auth_url_output = gr.Textbox(label="Authorization URL", value=CALLBACK_MANAGER.get_auth_url(), interactive=False)
gr.Markdown("Copy the URL above, open it in a browser, log in, and paste the 'code' from the redirect URL below.")
auth_code_input = gr.Textbox(label="Authorization Code")
auth_submit = gr.Button("Submit Code")
auth_result = gr.Textbox(label="Authentication Result")
patient_data_button = gr.Button("Fetch Patient Data")
patient_data_output = gr.Textbox(label="Patient Data", lines=10)
# Add button to generate PDF from MeldRx data
meldrx_pdf_button = gr.Button("Generate PDF from MeldRx Data")
meldrx_pdf_status = gr.Textbox(label="PDF Generation Status")
meldrx_pdf_download = gr.File(label="Download Generated PDF")
auth_submit.click(fn=CALLBACK_MANAGER.set_auth_code, inputs=auth_code_input, outputs=auth_result)
with gr.Tab("Patient Dashboard"):
gr.Markdown("## Patient Data")
dashboard_output = gr.HTML("<p>Fetch patient data from the Authentication tab first.</p>")
refresh_btn = gr.Button("Refresh Data")
# Simple function to update dashboard based on fetched data
def update_dashboard():
try:
data = CALLBACK_MANAGER.get_patient_data()
if data.startswith("Not authenticated") or data.startswith("Failed") or data.startswith("Error"):
return f"<p>{data}</p>"
try:
# Parse the data
patients_data = json.loads(data)
patients = []
# Extract patients from bundle
for entry in patients_data.get("entry", []):
resource = entry.get("resource", {})
if resource.get("resourceType") == "Patient":
patients.append(resource)
# Generate HTML for each patient
html = "<h3>Patients</h3>"
for patient in patients:
# Extract name
name = patient.get("name", [{}])[0]
given = " ".join(name.get("given", ["Unknown"]))
family = name.get("family", "Unknown")
# Extract other details
gender = patient.get("gender", "unknown").capitalize()
birth_date = patient.get("birthDate", "Unknown")
# Generate HTML card
html += f"""
<div style="border: 1px solid #ddd; padding: 10px; margin: 10px 0; border-radius: 5px;">
<h4>{given} {family}</h4>
<p><strong>Gender:</strong> {gender}</p>
<p><strong>Birth Date:</strong> {birth_date}</p>
<p><strong>ID:</strong> {patient.get("id", "Unknown")}</p>
</div>
"""
return html
except Exception as e:
return f"<p>Error parsing patient data: {str(e)}</p>"
except Exception as e:
return f"<p>Error fetching patient data: {str(e)}</p>"
with gr.Tab("Discharge Form"):
gr.Markdown("## Patient Details")
with gr.Row():
first_name = gr.Textbox(label="First Name")
last_name = gr.Textbox(label="Last Name")
middle_initial = gr.Textbox(label="Middle Initial")
with gr.Row():
dob = gr.Textbox(label="Date of Birth")
age = gr.Textbox(label="Age")
sex = gr.Textbox(label="Sex")
address = gr.Textbox(label="Address")
with gr.Row():
city = gr.Textbox(label="City")
state = gr.Textbox(label="State")
zip_code = gr.Textbox(label="Zip Code")
gr.Markdown("## Primary Healthcare Professional Details")
with gr.Row():
doctor_first_name = gr.Textbox(label="Doctor's First Name")
doctor_last_name = gr.Textbox(label="Doctor's Last Name")
doctor_middle_initial = gr.Textbox(label="Middle Initial")
hospital_name = gr.Textbox(label="Hospital/Clinic Name")
doctor_address = gr.Textbox(label="Address")
with gr.Row():
doctor_city = gr.Textbox(label="City")
doctor_state = gr.Textbox(label="State")
doctor_zip = gr.Textbox(label="Zip Code")
gr.Markdown("## Admission and Discharge Details")
with gr.Row():
admission_date = gr.Textbox(label="Date of Admission")
referral_source = gr.Textbox(label="Source of Referral")
admission_method = gr.Textbox(label="Method of Admission")
with gr.Row():
discharge_date = gr.Textbox(label="Date of Discharge")
discharge_reason = gr.Radio(["Treated", "Transferred", "Discharge Against Advice", "Patient Died"], label="Discharge Reason")
date_of_death = gr.Textbox(label="Date of Death (if applicable)")
gr.Markdown("## Diagnosis & Procedures")
diagnosis = gr.Textbox(label="Diagnosis")
procedures = gr.Textbox(label="Operation & Procedures")
gr.Markdown("## Medication Details")
medications = gr.Textbox(label="Medication on Discharge")
gr.Markdown("## Prepared By")
with gr.Row():
preparer_name = gr.Textbox(label="Name")
preparer_job_title = gr.Textbox(label="Job Title")
# Add buttons for both display form and generate PDF
with gr.Row():
submit_display = gr.Button("Display Form")
submit_pdf = gr.Button("Generate PDF")
# Output areas
form_output = gr.Markdown()
pdf_output = gr.File(label="Download PDF")
# Connect the display form button
submit_display.click(
display_form,
inputs=[
first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code,
doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address,
doctor_city, doctor_state, doctor_zip,
admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death,
diagnosis, procedures, medications, preparer_name, preparer_job_title
],
outputs=form_output
)
# Connect the generate PDF button
submit_pdf.click(
generate_pdf_from_form,
inputs=[
first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code,
doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address,
doctor_city, doctor_state, doctor_zip,
admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death,
diagnosis, procedures, medications, preparer_name, preparer_job_title
],
outputs=pdf_output
)
with gr.Tab("Medical File Analysis"):
gr.Markdown("## Analyze Medical Files with DocuNexus AI")
with gr.Column():
dicom_file = gr.File(file_types=['.dcm'], label="Upload DICOM File (.dcm)")
dicom_ai_output = gr.Textbox(label="DICOM Analysis Report", lines=5)
analyze_dicom_button = gr.Button("Analyze DICOM with AI")
hl7_file = gr.File(file_types=['.hl7'], label="Upload HL7 File (.hl7)")
hl7_ai_output = gr.Textbox(label="HL7 Analysis Report", lines=5)
analyze_hl7_button = gr.Button("Analyze HL7 with AI")
xml_file = gr.File(file_types=['.xml'], label="Upload XML File (.xml)")
xml_ai_output = gr.Textbox(label="XML Analysis Report", lines=5)
analyze_xml_button = gr.Button("Analyze XML with AI")
ccda_file = gr.File(file_types=['.xml', '.cda', '.ccd'], label="Upload CCDA File (.xml, .cda, .ccd)")
ccda_ai_output = gr.Textbox(label="CCDA Analysis Report", lines=5)
analyze_ccda_button = gr.Button("Analyze CCDA with AI")
ccd_file = gr.File(file_types=['.ccd'], label="Upload CCD File (.ccd)") # Redundant, as CCDA also handles .ccd, but kept for clarity
ccd_ai_output = gr.Textbox(label="CCD Analysis Report", lines=5) # Redundant
analyze_ccd_button = gr.Button("Analyze CCD with AI") # Redundant
# Connect AI Analysis Buttons (using placeholder functions for now)
analyze_dicom_button.click(
lambda file: analyze_dicom_file_with_ai(file.name) if file else "No DICOM file uploaded",
inputs=dicom_file, outputs=dicom_ai_output
)
analyze_hl7_button.click(
lambda file: analyze_hl7_file_with_ai(file.name) if file else "No HL7 file uploaded",
inputs=hl7_file, outputs=hl7_ai_output
)
analyze_xml_button.click(
lambda file: analyze_cda_xml_file_with_ai(file.name) if file else "No XML file uploaded", # Using CCDA/XML analyzer for generic XML for now
inputs=xml_file, outputs=xml_ai_output
)
analyze_ccda_button.click(
lambda file: analyze_cda_xml_file_with_ai(file.name) if file else "No CCDA file uploaded", # Using CCDA/XML analyzer
inputs=ccda_file, outputs=ccda_ai_output
)
analyze_ccd_button.click( # Redundant button, but kept for UI if needed
lambda file: analyze_cda_xml_file_with_ai(file.name) if file else "No CCD file uploaded", # Using CCDA/XML analyzer
inputs=ccd_file, outputs=ccd_ai_output
)
with gr.Tab("One-Click Discharge Paper"): # New Tab for One-Click Discharge Paper
gr.Markdown("## One-Click Medical Discharge Paper Generation")
one_click_pdf_button = gr.Button("Generate Discharge Paper (One-Click)")
one_click_pdf_status = gr.Textbox(label="Discharge Paper Generation Status")
one_click_pdf_download = gr.File(label="Download Discharge Paper")
one_click_pdf_button.click(
generate_discharge_paper_one_click,
inputs=[],
outputs=[one_click_pdf_download, one_click_pdf_status]
)
# Connect the patient data buttons
patient_data_button.click(
fn=CALLBACK_MANAGER.get_patient_data,
inputs=None,
outputs=patient_data_output
)
# Connect refresh button to update dashboard
refresh_btn.click(
fn=update_dashboard,
inputs=None,
outputs=dashboard_output
)
# Add functionality for PDF generation from MeldRx data
meldrx_pdf_button.click(
fn=generate_pdf_from_meldrx,
inputs=patient_data_output,
outputs=[meldrx_pdf_download, meldrx_pdf_status]
)
# Connect patient data updates to dashboard
patient_data_button.click(
fn=update_dashboard,
inputs=None,
outputs=dashboard_output
)
# Launch with sharing enabled for public access
demo.launch(share=True) |