Muhammad541's picture
Update app.py
46905b1 verified
raw
history blame
11.5 kB
import os
import numpy as np
import torch
from sentence_transformers import SentenceTransformer, util
import faiss
import pickle
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import scipy.special
from flask import Flask, request, jsonify
import logging
from pymongo import MongoClient
import pandas as pd
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Disable tokenizers parallelism
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Paths for saving artifacts
MODEL_DIR = "./saved_models"
FALLBACK_MODEL_DIR = "/tmp/saved_models"
try:
os.makedirs(MODEL_DIR, exist_ok=True)
logger.info(f"Using model directory: {MODEL_DIR}")
chosen_model_dir = MODEL_DIR
except Exception as e:
logger.warning(f"Failed to create {MODEL_DIR}: {e}. Using fallback directory.")
os.makedirs(FALLBACK_MODEL_DIR, exist_ok=True)
chosen_model_dir = FALLBACK_MODEL_DIR
# Update paths
UNIVERSAL_MODEL_PATH = os.path.join(chosen_model_dir, "universal_model")
DETECTOR_MODEL_PATH = os.path.join(chosen_model_dir, "detector_model")
FAISS_INDEX_PATH = os.path.join(chosen_model_dir, "faiss_index.index")
ANSWER_EMBEDDINGS_PATH = os.path.join(chosen_model_dir, "answer_embeddings.pkl")
COURSE_EMBEDDINGS_PATH = os.path.join(chosen_model_dir, "course_embeddings.pkl")
JOB_EMBEDDINGS_PATH = os.path.join(chosen_model_dir, "job_embeddings.pkl")
# MongoDB connection (use the same URI as your Express app)
MONGO_URI = "mongodb://localhost:27017/DMS" # Replace with your MongoDB URI
client = MongoClient(MONGO_URI)
db = client.get_database()
# Load models
universal_model = SentenceTransformer(UNIVERSAL_MODEL_PATH) if os.path.exists(UNIVERSAL_MODEL_PATH) else SentenceTransformer("all-MiniLM-L6-v2")
detector_tokenizer = AutoTokenizer.from_pretrained(DETECTOR_MODEL_PATH) if os.path.exists(DETECTOR_MODEL_PATH) else AutoTokenizer.from_pretrained("roberta-base-openai-detector")
detector_model = AutoModelForSequenceClassification.from_pretrained(DETECTOR_MODEL_PATH) if os.path.exists(DETECTOR_MODEL_PATH) else AutoModelForSequenceClassification.from_pretrained("roberta-base-openai-detector")
# Global variables
faiss_index = None
answer_embeddings = None
course_embeddings = None
job_embeddings = None
# Load data from MongoDB
def load_mongodb_data():
global answer_embeddings, course_embeddings, job_embeddings, faiss_index
try:
# Load questions from Generated_Skill-Based_Questions.csv (for now, keep as fallback; later, move to MongoDB)
questions_df = pd.read_csv("Generated_Skill-Based_Questions.csv") # Replace with MongoDB query if stored
courses = list(db.courses.find()) # Fetch all courses
jobs = list(db.jobs.find()) # Fetch all jobs
# Precompute embeddings
answer_embeddings = universal_model.encode(questions_df['Answer'].tolist(), batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu").cpu().numpy()
course_skills = [course['skills'] for course in courses] # Adjust based on your Course schema
course_embeddings = universal_model.encode(course_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu").cpu().numpy()
job_skills = [job['skills'] for job in jobs] # Adjust based on your Job schema
job_embeddings = universal_model.encode(job_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu").cpu().numpy()
# Build FAISS index
faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
faiss_index.add(answer_embeddings)
# Save precomputed data
with open(ANSWER_EMBEDDINGS_PATH, 'wb') as f: pickle.dump(answer_embeddings, f)
with open(COURSE_EMBEDDINGS_PATH, 'wb') as f: pickle.dump(course_embeddings, f)
with open(JOB_EMBEDDINGS_PATH, 'wb') as f: pickle.dump(job_embeddings, f)
faiss.write_index(faiss_index, FAISS_INDEX_PATH)
logger.info("Loaded and precomputed MongoDB data successfully")
except Exception as e:
logger.error(f"Error loading MongoDB data: {e}")
raise
# Evaluate response (unchanged logic, but use MongoDB questions if stored)
def evaluate_response(args):
skill, user_answer, question_idx = args
if not user_answer:
return skill, 0.0, False
inputs = detector_tokenizer(user_answer, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
logits = detector_model(**inputs).logits
probs = scipy.special.softmax(logits, axis=1).tolist()[0]
is_ai = probs[1] > 0.5
user_embedding = universal_model.encode([user_answer], batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")[0]
expected_embedding = torch.tensor(answer_embeddings[question_idx])
score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100
return skill, round(max(0, score), 2), is_ai
# Recommend courses from MongoDB
def recommend_courses(skills_to_improve, user_level, upgrade=False):
if not skills_to_improve or not course_embeddings:
return []
skill_indices = [i for i, skill in enumerate(questions_df['Skill'].unique()) if skill in skills_to_improve]
if not skill_indices:
return []
similarities = util.pytorch_cos_sim(
torch.tensor(universal_model.encode(questions_df['Skill'].unique()[skill_indices].tolist(), batch_size=128)),
torch.tensor(course_embeddings)
).cpu().numpy()
courses = list(db.courses.find())
popularity = [course.get('popularity', 0.8) for course in courses]
completion_rate = [course.get('completion_rate', 0.7) for course in courses]
total_scores = 0.6 * np.max(similarities, axis=0) + 0.2 * np.array(popularity) + 0.2 * np.array(completion_rate)
target_level = 'Advanced' if upgrade else user_level
idx = np.argsort(-total_scores)[:5]
candidates = [courses[i] for i in idx]
filtered_candidates = [c for c in candidates if target_level.lower() in c.get('level', 'Intermediate').lower()]
return filtered_candidates[:3] if filtered_candidates else candidates[:3]
# Recommend jobs from MongoDB
def recommend_jobs(user_skills, user_level):
if not job_embeddings:
return []
skill_indices = [i for i, skill in enumerate(questions_df['Skill'].unique()) if skill in user_skills]
if not skill_indices:
return []
similarities = util.pytorch_cos_sim(
torch.tensor(universal_model.encode(questions_df['Skill'].unique()[skill_indices].tolist(), batch_size=128)),
torch.tensor(job_embeddings)
).cpu().numpy()
jobs = list(db.jobs.find())
level_map = {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}
user_level_num = level_map.get(user_level, 1)
level_scores = [1 - abs(level_map.get(job.get('level', 'Intermediate'), 1) - user_level_num) / 2 for job in jobs]
location_pref = [1.0 if job.get('location', 'Remote') in ['Islamabad', 'Karachi'] else 0.7 for job in jobs]
total_job_scores = 0.5 * np.max(similarities, axis=0) + 0.2 * np.array(level_scores) + 0.1 * np.array(location_pref)
top_job_indices = np.argsort(-total_job_scores)[:5]
return [(jobs[i]['jobTitle'], jobs[i]['companyName'], jobs[i].get('location', 'Remote')) for i in top_job_indices]
# Flask app setup
app = Flask(__name__)
@app.route('/health')
def health_check():
return jsonify({"status": "active", "model_dir": chosen_model_dir})
@app.route('/assess', methods=['POST'])
def assess_skills():
try:
data = request.get_json()
if not data or 'skills' not in data or 'answers' not in data:
return jsonify({"error": "Missing required fields"}), 400
user_skills = [s.strip() for s in data['skills'] if isinstance(s, str)]
answers = [a.strip() for a in data['answers'] if isinstance(a, str)]
user_level = data.get('user_level', 'Intermediate').strip()
if len(answers) != len(user_skills):
return jsonify({"error": "Answers count must match skills count"}), 400
load_mongodb_data() # Load and precompute MongoDB data
# Generate questions (for now, use CSV as fallback; move to MongoDB later)
questions_df = pd.read_csv("Generated_Skill-Based_Questions.csv")
user_questions = []
for skill in user_skills:
skill_questions = questions_df[questions_df['Skill'] == skill]
if not skill_questions.empty:
user_questions.append(skill_questions.sample(1).iloc[0])
else:
user_questions.append({
'Skill': skill,
'Question': f"What are the best practices for using {skill} in a production environment?",
'Answer': f"Best practices for {skill} include proper documentation, monitoring, and security measures."
})
user_questions = pd.DataFrame(user_questions).reset_index(drop=True)
user_responses = []
for idx, row in user_questions.iterrows():
answer = answers[idx]
if not answer or answer.lower() == 'skip':
user_responses.append((row['Skill'], None, None))
else:
question_idx = questions_df.index[questions_df['Question'] == row['Question']][0]
user_responses.append((row['Skill'], answer, question_idx))
results = [evaluate_response(response) for response in user_responses]
user_scores = {}
ai_flags = {}
scores_list = []
skipped_questions = [f"{skill} ({question})" for skill, user_code, _ in user_responses if not user_code]
for skill, score, is_ai in results:
if skill in user_scores:
user_scores[skill] = max(user_scores[skill], score)
ai_flags[skill] = ai_flags[skill] or is_ai
else:
user_scores[skill] = score
ai_flags[skill] = is_ai
scores_list.append(score)
mean_score = np.mean(scores_list) if scores_list else 50
dynamic_threshold = max(40, mean_score)
weak_skills = [skill for skill, score in user_scores.items() if score < dynamic_threshold]
courses = recommend_courses(weak_skills or user_skills, user_level, upgrade=not weak_skills)
jobs = recommend_jobs(user_skills, user_level)
return jsonify({
"assessment_results": {
"skills": [
{
"skill": skill,
"progress": f"{'■' * int(score//10)}{'-' * (10 - int(score//10))}",
"score": f"{score:.2f} %",
"origin": "AI-Generated" if is_ai else "Human-Written"
} for skill, score, is_ai in results
],
"mean_score": mean_score,
"dynamic_threshold": dynamic_threshold,
"weak_skills": weak_skills,
"skipped_questions": skipped_questions
},
"recommended_courses": [{"course_title": c['title'], "organization": c.get('organization', 'Unknown')} for c in courses],
"recommended_jobs": jobs[:5]
})
except Exception as e:
logger.error(f"Assessment error: {e}")
return jsonify({"error": "Internal server error"}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, threaded=True)