Spaces:
Runtime error
Runtime error
File size: 11,525 Bytes
f3434ed 46905b1 d607da0 baacef2 46905b1 baacef2 edecf53 46905b1 f3434ed d607da0 0d77b69 d607da0 baacef2 ceba453 246cf8f ceba453 246cf8f d607da0 0d77b69 246cf8f d51cb13 46905b1 729d876 46905b1 d51cb13 46905b1 d51cb13 46905b1 6a18322 46905b1 a047faf 46905b1 a047faf 46905b1 a047faf 46905b1 a047faf 46905b1 a047faf 729d876 46905b1 d607da0 46905b1 ceba453 46905b1 d607da0 46905b1 aa352fb ceba453 46905b1 d607da0 46905b1 ceba453 46905b1 d607da0 46905b1 ceba453 d607da0 0093774 ceba453 46905b1 2f417d6 46905b1 2f417d6 729d876 2f417d6 729d876 2f417d6 729d876 ceba453 2f417d6 729d876 ceba453 2f417d6 ceba453 2f417d6 46905b1 2f417d6 ceba453 0093774 ceba453 aa352fb d607da0 ceba453 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
import numpy as np
import torch
from sentence_transformers import SentenceTransformer, util
import faiss
import pickle
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import scipy.special
from flask import Flask, request, jsonify
import logging
from pymongo import MongoClient
import pandas as pd
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Disable tokenizers parallelism
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Paths for saving artifacts
MODEL_DIR = "./saved_models"
FALLBACK_MODEL_DIR = "/tmp/saved_models"
try:
os.makedirs(MODEL_DIR, exist_ok=True)
logger.info(f"Using model directory: {MODEL_DIR}")
chosen_model_dir = MODEL_DIR
except Exception as e:
logger.warning(f"Failed to create {MODEL_DIR}: {e}. Using fallback directory.")
os.makedirs(FALLBACK_MODEL_DIR, exist_ok=True)
chosen_model_dir = FALLBACK_MODEL_DIR
# Update paths
UNIVERSAL_MODEL_PATH = os.path.join(chosen_model_dir, "universal_model")
DETECTOR_MODEL_PATH = os.path.join(chosen_model_dir, "detector_model")
FAISS_INDEX_PATH = os.path.join(chosen_model_dir, "faiss_index.index")
ANSWER_EMBEDDINGS_PATH = os.path.join(chosen_model_dir, "answer_embeddings.pkl")
COURSE_EMBEDDINGS_PATH = os.path.join(chosen_model_dir, "course_embeddings.pkl")
JOB_EMBEDDINGS_PATH = os.path.join(chosen_model_dir, "job_embeddings.pkl")
# MongoDB connection (use the same URI as your Express app)
MONGO_URI = "mongodb://localhost:27017/DMS" # Replace with your MongoDB URI
client = MongoClient(MONGO_URI)
db = client.get_database()
# Load models
universal_model = SentenceTransformer(UNIVERSAL_MODEL_PATH) if os.path.exists(UNIVERSAL_MODEL_PATH) else SentenceTransformer("all-MiniLM-L6-v2")
detector_tokenizer = AutoTokenizer.from_pretrained(DETECTOR_MODEL_PATH) if os.path.exists(DETECTOR_MODEL_PATH) else AutoTokenizer.from_pretrained("roberta-base-openai-detector")
detector_model = AutoModelForSequenceClassification.from_pretrained(DETECTOR_MODEL_PATH) if os.path.exists(DETECTOR_MODEL_PATH) else AutoModelForSequenceClassification.from_pretrained("roberta-base-openai-detector")
# Global variables
faiss_index = None
answer_embeddings = None
course_embeddings = None
job_embeddings = None
# Load data from MongoDB
def load_mongodb_data():
global answer_embeddings, course_embeddings, job_embeddings, faiss_index
try:
# Load questions from Generated_Skill-Based_Questions.csv (for now, keep as fallback; later, move to MongoDB)
questions_df = pd.read_csv("Generated_Skill-Based_Questions.csv") # Replace with MongoDB query if stored
courses = list(db.courses.find()) # Fetch all courses
jobs = list(db.jobs.find()) # Fetch all jobs
# Precompute embeddings
answer_embeddings = universal_model.encode(questions_df['Answer'].tolist(), batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu").cpu().numpy()
course_skills = [course['skills'] for course in courses] # Adjust based on your Course schema
course_embeddings = universal_model.encode(course_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu").cpu().numpy()
job_skills = [job['skills'] for job in jobs] # Adjust based on your Job schema
job_embeddings = universal_model.encode(job_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu").cpu().numpy()
# Build FAISS index
faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
faiss_index.add(answer_embeddings)
# Save precomputed data
with open(ANSWER_EMBEDDINGS_PATH, 'wb') as f: pickle.dump(answer_embeddings, f)
with open(COURSE_EMBEDDINGS_PATH, 'wb') as f: pickle.dump(course_embeddings, f)
with open(JOB_EMBEDDINGS_PATH, 'wb') as f: pickle.dump(job_embeddings, f)
faiss.write_index(faiss_index, FAISS_INDEX_PATH)
logger.info("Loaded and precomputed MongoDB data successfully")
except Exception as e:
logger.error(f"Error loading MongoDB data: {e}")
raise
# Evaluate response (unchanged logic, but use MongoDB questions if stored)
def evaluate_response(args):
skill, user_answer, question_idx = args
if not user_answer:
return skill, 0.0, False
inputs = detector_tokenizer(user_answer, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
logits = detector_model(**inputs).logits
probs = scipy.special.softmax(logits, axis=1).tolist()[0]
is_ai = probs[1] > 0.5
user_embedding = universal_model.encode([user_answer], batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")[0]
expected_embedding = torch.tensor(answer_embeddings[question_idx])
score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100
return skill, round(max(0, score), 2), is_ai
# Recommend courses from MongoDB
def recommend_courses(skills_to_improve, user_level, upgrade=False):
if not skills_to_improve or not course_embeddings:
return []
skill_indices = [i for i, skill in enumerate(questions_df['Skill'].unique()) if skill in skills_to_improve]
if not skill_indices:
return []
similarities = util.pytorch_cos_sim(
torch.tensor(universal_model.encode(questions_df['Skill'].unique()[skill_indices].tolist(), batch_size=128)),
torch.tensor(course_embeddings)
).cpu().numpy()
courses = list(db.courses.find())
popularity = [course.get('popularity', 0.8) for course in courses]
completion_rate = [course.get('completion_rate', 0.7) for course in courses]
total_scores = 0.6 * np.max(similarities, axis=0) + 0.2 * np.array(popularity) + 0.2 * np.array(completion_rate)
target_level = 'Advanced' if upgrade else user_level
idx = np.argsort(-total_scores)[:5]
candidates = [courses[i] for i in idx]
filtered_candidates = [c for c in candidates if target_level.lower() in c.get('level', 'Intermediate').lower()]
return filtered_candidates[:3] if filtered_candidates else candidates[:3]
# Recommend jobs from MongoDB
def recommend_jobs(user_skills, user_level):
if not job_embeddings:
return []
skill_indices = [i for i, skill in enumerate(questions_df['Skill'].unique()) if skill in user_skills]
if not skill_indices:
return []
similarities = util.pytorch_cos_sim(
torch.tensor(universal_model.encode(questions_df['Skill'].unique()[skill_indices].tolist(), batch_size=128)),
torch.tensor(job_embeddings)
).cpu().numpy()
jobs = list(db.jobs.find())
level_map = {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}
user_level_num = level_map.get(user_level, 1)
level_scores = [1 - abs(level_map.get(job.get('level', 'Intermediate'), 1) - user_level_num) / 2 for job in jobs]
location_pref = [1.0 if job.get('location', 'Remote') in ['Islamabad', 'Karachi'] else 0.7 for job in jobs]
total_job_scores = 0.5 * np.max(similarities, axis=0) + 0.2 * np.array(level_scores) + 0.1 * np.array(location_pref)
top_job_indices = np.argsort(-total_job_scores)[:5]
return [(jobs[i]['jobTitle'], jobs[i]['companyName'], jobs[i].get('location', 'Remote')) for i in top_job_indices]
# Flask app setup
app = Flask(__name__)
@app.route('/health')
def health_check():
return jsonify({"status": "active", "model_dir": chosen_model_dir})
@app.route('/assess', methods=['POST'])
def assess_skills():
try:
data = request.get_json()
if not data or 'skills' not in data or 'answers' not in data:
return jsonify({"error": "Missing required fields"}), 400
user_skills = [s.strip() for s in data['skills'] if isinstance(s, str)]
answers = [a.strip() for a in data['answers'] if isinstance(a, str)]
user_level = data.get('user_level', 'Intermediate').strip()
if len(answers) != len(user_skills):
return jsonify({"error": "Answers count must match skills count"}), 400
load_mongodb_data() # Load and precompute MongoDB data
# Generate questions (for now, use CSV as fallback; move to MongoDB later)
questions_df = pd.read_csv("Generated_Skill-Based_Questions.csv")
user_questions = []
for skill in user_skills:
skill_questions = questions_df[questions_df['Skill'] == skill]
if not skill_questions.empty:
user_questions.append(skill_questions.sample(1).iloc[0])
else:
user_questions.append({
'Skill': skill,
'Question': f"What are the best practices for using {skill} in a production environment?",
'Answer': f"Best practices for {skill} include proper documentation, monitoring, and security measures."
})
user_questions = pd.DataFrame(user_questions).reset_index(drop=True)
user_responses = []
for idx, row in user_questions.iterrows():
answer = answers[idx]
if not answer or answer.lower() == 'skip':
user_responses.append((row['Skill'], None, None))
else:
question_idx = questions_df.index[questions_df['Question'] == row['Question']][0]
user_responses.append((row['Skill'], answer, question_idx))
results = [evaluate_response(response) for response in user_responses]
user_scores = {}
ai_flags = {}
scores_list = []
skipped_questions = [f"{skill} ({question})" for skill, user_code, _ in user_responses if not user_code]
for skill, score, is_ai in results:
if skill in user_scores:
user_scores[skill] = max(user_scores[skill], score)
ai_flags[skill] = ai_flags[skill] or is_ai
else:
user_scores[skill] = score
ai_flags[skill] = is_ai
scores_list.append(score)
mean_score = np.mean(scores_list) if scores_list else 50
dynamic_threshold = max(40, mean_score)
weak_skills = [skill for skill, score in user_scores.items() if score < dynamic_threshold]
courses = recommend_courses(weak_skills or user_skills, user_level, upgrade=not weak_skills)
jobs = recommend_jobs(user_skills, user_level)
return jsonify({
"assessment_results": {
"skills": [
{
"skill": skill,
"progress": f"{'■' * int(score//10)}{'-' * (10 - int(score//10))}",
"score": f"{score:.2f} %",
"origin": "AI-Generated" if is_ai else "Human-Written"
} for skill, score, is_ai in results
],
"mean_score": mean_score,
"dynamic_threshold": dynamic_threshold,
"weak_skills": weak_skills,
"skipped_questions": skipped_questions
},
"recommended_courses": [{"course_title": c['title'], "organization": c.get('organization', 'Unknown')} for c in courses],
"recommended_jobs": jobs[:5]
})
except Exception as e:
logger.error(f"Assessment error: {e}")
return jsonify({"error": "Internal server error"}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, threaded=True) |