Spaces:
Runtime error
Runtime error
File size: 17,044 Bytes
9b11abc db6e637 9b11abc a43664e 9b11abc d607da0 9b11abc 2a0b0fa 9b11abc 2a0b0fa e069344 2a0b0fa 9b11abc e069344 9b11abc e069344 9b11abc e069344 9b11abc e069344 9b11abc e069344 9b11abc e069344 9b11abc e069344 9b11abc e069344 9b11abc e069344 9b11abc 2a0b0fa 9b11abc e069344 9b11abc e069344 9b11abc e069344 9b11abc 2a0b0fa e069344 2a0b0fa 9b11abc 2a0b0fa 9b11abc 2a0b0fa e069344 2a0b0fa 9b11abc aa352fb 9b11abc 2a0b0fa 9b11abc 2a0b0fa 9b11abc 2a0b0fa e069344 2a0b0fa 9b11abc a43664e 9b11abc 2a0b0fa e069344 2a0b0fa 9b11abc 2a0b0fa 9b11abc 2a0b0fa 9b11abc e069344 9b11abc 2a0b0fa 9b11abc 2a0b0fa 9b11abc e069344 9b11abc e069344 9b11abc 2a0b0fa e069344 2a0b0fa 9b11abc 2f417d6 e069344 9b11abc 2a0b0fa 9b11abc e069344 9b11abc e069344 9b11abc 2a0b0fa 9b11abc e069344 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import os
import pandas as pd
import torch
from sentence_transformers import SentenceTransformer, util
import faiss
import numpy as np
import pickle
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import scipy.special
from sklearn.feature_extraction.text import TfidfVectorizer
from flask import Flask, request, jsonify
import logging
from pymongo import MongoClient
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Disable tokenizers parallelism to avoid fork-related deadlocks
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# MongoDB connection
MONGO_URI = "mongodb://muhammadbinimran1001:[email protected]:27017,dsm-shard-00-01.inrzs.mongodb.net:27017,dsm-shard-00-02.inrzs.mongodb.net:27017/?ssl=true&replicaSet=atlas-nbg4er-shard-0&authSource=admin&retryWrites=true&w=majority"
client = MongoClient(MONGO_URI)
db = client.get_database("test")
users_collection = db["users"]
courses_collection = db["courses"]
jobs_collection = db["jobs"]
# Paths for saving artifacts
MODEL_DIR = "./saved_models"
FALLBACK_MODEL_DIR = "/tmp/saved_models"
try:
os.makedirs(MODEL_DIR, exist_ok=True)
logger.info(f"Using model directory: {MODEL_DIR}")
chosen_model_dir = MODEL_DIR
except Exception as e:
logger.warning(f"Failed to create {MODEL_DIR}: {e}. Using fallback directory.")
os.makedirs(FALLBACK_MODEL_DIR, exist_ok=True)
chosen_model_dir = FALLBACK_MODEL_DIR
# Update paths
UNIVERSAL_MODEL_PATH = os.path.join(chosen_model_dir, "universal_model")
DETECTOR_MODEL_PATH = os.path.join(chosen_model_dir, "detector_model")
TFIDF_PATH = os.path.join(chosen_model_dir, "tfidf_vectorizer.pkl")
SKILL_TFIDF_PATH = os.path.join(chosen_model_dir, "skill_tfidf.pkl")
QUESTION_ANSWER_PATH = os.path.join(chosen_model_dir, "question_to_answer.pkl")
FAISS_INDEX_PATH = os.path.join(chosen_model_dir, "faiss_index.index")
ANSWER_EMBEDDINGS_PATH = os.path.join(chosen_model_dir, "answer_embeddings.pkl")
COURSE_SIMILARITY_PATH = os.path.join(chosen_model_dir, "course_similarity.pkl")
JOB_SIMILARITY_PATH = os.path.join(chosen_model_dir, "job_similarity.pkl")
# Global variables for precomputed data
tfidf_vectorizer = None
skill_tfidf = None
question_to_answer = None
faiss_index = None
answer_embeddings = None
course_similarity = None
job_similarity = None
# Improved dataset loading with fallback
def load_dataset(file_path, required_columns=None, additional_columns=None, fallback_data=None):
required_columns = required_columns or ["Skill", "Question", "Answer"]
additional_columns = additional_columns or ['popularity', 'completion_rate']
try:
df = pd.read_csv(file_path)
missing_required = [col for col in required_columns if col not in df.columns]
missing_additional = [col for col in additional_columns if col not in df.columns]
if missing_required:
logger.warning(f"Required columns {missing_required} missing in {file_path}. Adding empty values.")
for col in missing_required:
df[col] = ""
if missing_additional:
logger.warning(f"Additional columns {missing_additional} missing in {file_path}. Adding default values.")
for col in missing_additional:
df[col] = 0.8 if col == 'popularity' else 0.7 if col == 'completion_rate' else 0.0
if 'level' not in df.columns:
logger.warning(f"'level' column missing in {file_path}. Adding default 'Intermediate'.")
df['level'] = 'Intermediate'
else:
df['level'] = df['level'].fillna('Intermediate')
return df
except Exception as e:
logger.error(f"Error loading {file_path}: {e}. Using fallback data.")
return pd.DataFrame(fallback_data) if fallback_data is not None else None
# Load datasets with fallbacks
questions_df = load_dataset("Generated_Skill-Based_Questions.csv", fallback_data={
'Skill': ['Linux', 'Git', 'Node.js', 'Python', 'Kubernetes'],
'Question': ['Advanced Linux question', 'Advanced Git question', 'Basic Node.js question',
'Intermediate Python question', 'Basic Kubernetes question'],
'Answer': ['Linux answer', 'Git answer', 'Node.js answer', 'Python answer', 'Kubernetes answer']
})
# Validate questions_df
if questions_df is None or questions_df.empty:
logger.error("questions_df is empty or could not be loaded. Exiting.")
exit(1)
if not all(col in questions_df.columns for col in ["Skill", "Question", "Answer"]):
logger.error("questions_df is missing required columns. Exiting.")
exit(1)
logger.info(f"questions_df loaded with {len(questions_df)} rows. Skills available: {list(questions_df['Skill'].unique())}")
# Load or Initialize Models with Fallback
def load_universal_model():
default_model = "all-MiniLM-L6-v2"
try:
if os.path.exists(UNIVERSAL_MODEL_PATH):
logger.info(f"Loading universal model from {UNIVERSAL_MODEL_PATH}")
return SentenceTransformer(UNIVERSAL_MODEL_PATH)
logger.info(f"Loading universal model: {default_model}")
model = SentenceTransformer(default_model)
model.save(UNIVERSAL_MODEL_PATH)
return model
except Exception as e:
logger.error(f"Failed to load universal model {default_model}: {e}. Exiting.")
exit(1)
universal_model = load_universal_model()
try:
detector_tokenizer = AutoTokenizer.from_pretrained(DETECTOR_MODEL_PATH if os.path.exists(DETECTOR_MODEL_PATH) else "roberta-base-openai-detector")
detector_model = AutoModelForSequenceClassification.from_pretrained(DETECTOR_MODEL_PATH if os.path.exists(DETECTOR_MODEL_PATH) else "roberta-base-openai-detector")
except Exception as e:
logger.error(f"Failed to load detector model: {e}. Exiting.")
exit(1)
# Load Precomputed Resources
def load_precomputed_resources():
global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings, course_similarity, job_similarity
paths = [TFIDF_PATH, SKILL_TFIDF_PATH, QUESTION_ANSWER_PATH, FAISS_INDEX_PATH, ANSWER_EMBEDDINGS_PATH, COURSE_SIMILARITY_PATH, JOB_SIMILARITY_PATH]
if all(os.path.exists(p) for p in paths):
try:
with open(TFIDF_PATH, 'rb') as f: tfidf_vectorizer = pickle.load(f)
with open(SKILL_TFIDF_PATH, 'rb') as f: skill_tfidf = pickle.load(f)
with open(QUESTION_ANSWER_PATH, 'rb') as f: question_to_answer = pickle.load(f)
faiss_index = faiss.read_index(FAISS_INDEX_PATH)
with open(ANSWER_EMBEDDINGS_PATH, 'rb') as f: answer_embeddings = pickle.load(f)
with open(COURSE_SIMILARITY_PATH, 'rb') as f: course_similarity = pickle.load(f)
with open(JOB_SIMILARITY_PATH, 'rb') as f: job_similarity = pickle.load(f)
logger.info("Loaded precomputed resources successfully")
except Exception as e:
logger.error(f"Error loading precomputed resources: {e}")
precompute_resources()
else:
precompute_resources()
# Precompute Resources Offline
def precompute_resources():
global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings, course_similarity, job_similarity
logger.info("Precomputing resources offline")
try:
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
all_texts = questions_df['Answer'].tolist() + questions_df['Question'].tolist()
tfidf_vectorizer.fit(all_texts)
skill_tfidf = {skill.lower(): tfidf_vectorizer.transform([skill]).toarray()[0] for skill in questions_df['Skill'].unique()}
question_to_answer = dict(zip(questions_df['Question'], questions_df['Answer']))
answer_embeddings = universal_model.encode(questions_df['Answer'].tolist(), batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu").cpu().numpy()
faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
faiss_index.add(answer_embeddings)
# Initialize course_similarity and job_similarity as empty dicts if not available
course_similarity = course_similarity or {}
job_similarity = job_similarity or {}
with open(TFIDF_PATH, 'wb') as f: pickle.dump(tfidf_vectorizer, f)
with open(SKILL_TFIDF_PATH, 'wb') as f: pickle.dump(skill_tfidf, f)
with open(QUESTION_ANSWER_PATH, 'wb') as f: pickle.dump(question_to_answer, f)
faiss.write_index(faiss_index, FAISS_INDEX_PATH)
with open(ANSWER_EMBEDDINGS_PATH, 'wb') as f: pickle.dump(answer_embeddings, f)
with open(COURSE_SIMILARITY_PATH, 'wb') as f: pickle.dump(course_similarity, f)
with open(JOB_SIMILARITY_PATH, 'wb') as f: pickle.dump(job_similarity, f)
universal_model.save(UNIVERSAL_MODEL_PATH)
logger.info(f"Precomputed resources saved to {chosen_model_dir}")
except Exception as e:
logger.error(f"Error during precomputation: {e}")
raise
# Evaluation with precomputed data
def evaluate_response(args):
try:
skill, user_answer, question_idx = args
if not user_answer:
return skill, 0.0, False
inputs = detector_tokenizer(user_answer, return_tensors="pt", truncation=True, max_length=512, padding=True)
with torch.no_grad():
logits = detector_model(**inputs).logits
probs = scipy.special.softmax(logits, axis=1).tolist()[0]
is_ai = probs[1] > 0.5
user_embedding = universal_model.encode([user_answer], batch_size=1, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")[0]
expected_embedding = torch.tensor(answer_embeddings[question_idx])
score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100
user_tfidf = tfidf_vectorizer.transform([user_answer]).toarray()[0]
skill_vec = skill_tfidf.get(skill.lower(), np.zeros_like(user_tfidf))
relevance = np.dot(user_tfidf, skill_vec) / (np.linalg.norm(user_tfidf) * np.linalg.norm(skill_vec) + 1e-10)
score *= max(0.5, min(1.0, relevance))
return skill, round(max(0, score), 2), is_ai
except Exception as e:
logger.error(f"Evaluation error for {skill}: {e}")
return skill, 0.0, False
# Fetch questions for given skills
def get_questions_for_skills(skills):
user_questions = []
for skill in skills:
skill = skill.strip().capitalize() # Standardize skill format
skill_questions = questions_df[questions_df['Skill'].str.capitalize() == skill]
if not skill_questions.empty:
user_questions.append(skill_questions.sample(1).iloc[0].to_dict())
else:
user_questions.append({
'Skill': skill,
'Question': f"What are the best practices for using {skill} in a production environment?",
'Answer': f"Best practices for {skill} include proper documentation, monitoring, and security measures."
})
return user_questions
# Recommend courses from MongoDB
def recommend_courses_from_mongo(skills_to_improve, user_level, upgrade=False):
try:
if not skills_to_improve:
return []
target_level = 'Advanced' if upgrade else user_level
query = {
"skills": {"$in": skills_to_improve},
"category": {"$regex": target_level, "$options": "i"}
}
courses = list(courses_collection.find(query).limit(3))
return [{"title": course["title"], "provider": course.get("provider", "Unknown")} for course in courses]
except Exception as e:
logger.error(f"Course recommendation error: {e}")
return []
# Recommend jobs from MongoDB
def recommend_jobs_from_mongo(user_skills, user_level):
try:
if not user_skills:
return []
query = {
"skills": {"$in": user_skills},
"status": "active"
}
jobs = list(jobs_collection.find(query).limit(5))
return [{"jobTitle": job["jobTitle"], "companyName": job["companyName"], "location": job.get("location", "Remote")} for job in jobs]
except Exception as e:
logger.error(f"Job recommendation error: {e}")
return []
# Flask application setup
app = Flask(__name__)
@app.route('/')
def health_check():
return jsonify({"status": "active", "model_dir": chosen_model_dir})
@app.route('/get_questions', methods=['POST'])
def get_questions():
try:
data = request.get_json()
if not data or 'skills' not in data:
return jsonify({"error": "Missing skills field"}), 400
user_skills = [s.strip() for s in data['skills'] if isinstance(s, str)]
if not user_skills:
return jsonify({"error": "No valid skills provided"}), 400
load_precomputed_resources()
questions = get_questions_for_skills(user_skills)
return jsonify({"questions": questions})
except Exception as e:
logger.error(f"Get questions error: {e}")
return jsonify({"error": "Internal server error"}), 500
@app.route('/assess', methods=['POST'])
def assess_skills():
try:
data = request.get_json()
if not data or 'skills' not in data or 'answers' not in data or 'userId' not in data:
return jsonify({"error": "Missing required fields"}), 400
user_id = data['userId']
user_skills = [s.strip() for s in data['skills'] if isinstance(s, str)]
answers = [a.strip() for a in data['answers'] if isinstance(a, str)]
user_level = data.get('user_level', 'Intermediate').strip()
if not user_skills or len(answers) != len(user_skills):
return jsonify({"error": "Answers count must match skills count"}), 400
load_precomputed_resources()
user_questions = get_questions_for_skills(user_skills)
user_questions_df = pd.DataFrame(user_questions).reset_index(drop=True)
user_responses = []
for idx, row in user_questions_df.iterrows():
answer = answers[idx]
if not answer or answer.lower() == 'skip':
user_responses.append((row['Skill'], None, None))
else:
question_idx = questions_df.index[questions_df['Question'] == row['Question']].tolist()
if not question_idx:
logger.warning(f"Question not found in dataset: {row['Question']}")
user_responses.append((row['Skill'], None, None))
continue
user_responses.append((row['Skill'], answer, question_idx[0]))
results = [evaluate_response(response) for response in user_responses]
user_scores = {}
ai_flags = {}
scores_list = []
skipped_questions = [f"{skill} ({question})" for skill, user_code, _ in user_responses if not user_code]
for skill, score, is_ai in results:
if skill in user_scores:
user_scores[skill] = max(user_scores[skill], score)
ai_flags[skill] = ai_flags[skill] or is_ai
else:
user_scores[skill] = score
ai_flags[skill] = is_ai
if score > 0:
scores_list.append(score)
# Update user profile with scores
skill_scores = [{"skill": skill, "score": score} for skill, score, _ in results if score > 0]
users_collection.update_one(
{"_id": user_id},
{"$set": {"skillScores": skill_scores}},
upsert=True
)
mean_score = np.mean(scores_list) if scores_list else 50
dynamic_threshold = max(40, mean_score)
weak_skills = [skill for skill, score in user_scores.items() if score > 0 and score < dynamic_threshold]
courses = recommend_courses_from_mongo(weak_skills or user_skills, user_level, upgrade=not weak_skills)
jobs = recommend_jobs_from_mongo(user_skills, user_level)
return jsonify({
"assessment_results": {
"skills": [
{
"skill": skill,
"progress": f"{'■' * int(score//10)}{'-' * (10 - int(score//10))}",
"score": f"{score:.2f}%",
"origin": "AI-Generated" if is_ai else "Human-Written"
} for skill, score, is_ai in results
],
"mean_score": round(mean_score, 2),
"dynamic_threshold": round(dynamic_threshold, 2),
"weak_skills": weak_skills,
"skipped_questions": skipped_questions
},
"recommended_courses": courses,
"recommended_jobs": jobs
})
except Exception as e:
logger.error(f"Assessment error: {e}")
return jsonify({"error": "Internal server error"}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860) |