Muhammad541 commited on
Commit
9b11abc
·
verified ·
1 Parent(s): 29f657c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +390 -166
app.py CHANGED
@@ -1,175 +1,399 @@
1
- import streamlit as st
2
  import pandas as pd
3
- import numpy as np
4
- import pymongo
5
- from sentence_transformers import SentenceTransformer
6
  import faiss
 
7
  import pickle
8
- import os
9
- from dotenv import load_dotenv
10
-
11
- # Load environment variables
12
- load_dotenv()
13
- MONGO_URI = os.getenv("MONGO_URI", "mongodb://muhammadbinimran1001:[email protected]:27017,dsm-shard-00-01.inrzs.mongodb.net:27017,dsm-shard-00-02.inrzs.mongodb.net:27017/?ssl=true&replicaSet=atlas-nbg4er-shard-0&authSource=admin&retryWrites=true&w=majority")
14
-
15
- # Connect to MongoDB
16
- client = pymongo.MongoClient(MONGO_URI)
17
- db = client['test']
18
- users_collection = db['users']
19
- jobs_collection = db['jobs']
20
- courses_collection = db['courses']
21
-
22
- # Load datasets
23
- @st.cache_data
24
- def load_datasets():
25
- questions_df = pd.read_csv("Generated_Skill-Based_Questions.csv")
26
- courses_df = pd.read_csv("coursera_course_dataset_v2_no_null.csv")
27
- jobs_df = pd.read_csv("Updated_Job_Posting_Dataset.csv")
28
- return questions_df, courses_df, jobs_df
29
-
30
- questions_df, courses_df, jobs_df = load_datasets()
31
-
32
- # Load precomputed resources
33
- @st.cache_resource
34
- def load_resources():
35
- universal_model = SentenceTransformer("all-MiniLM-L6-v2")
36
- with open("tfidf_vectorizer.pkl", "rb") as f: tfidf_vectorizer = pickle.load(f)
37
- with open("skill_tfidf.pkl", "rb") as f: skill_tfidf = pickle.load(f)
38
- with open("question_to_answer.pkl", "rb") as f: question_to_answer = pickle.load(f)
39
- faiss_index = faiss.read_index("faiss_index.index")
40
- with open("answer_embeddings.pkl", "rb") as f: answer_embeddings = pickle.load(f)
41
- with open("course_similarity.pkl", "rb") as f: course_similarity = pickle.load(f)
42
- with open("job_similarity.pkl", "rb") as f: job_similarity = pickle.load(f)
43
- return universal_model, tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings, course_similarity, job_similarity
44
-
45
- universal_model, tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings, course_similarity, job_similarity = load_resources()
46
-
47
- # Evaluate response
48
- def evaluate_response(skill, user_answer, question_idx):
49
- if not user_answer or user_answer.lower() == "skip":
50
- return skill, 0.0
51
- user_embedding = universal_model.encode([user_answer])[0]
52
- expected_embedding = answer_embeddings[question_idx]
53
- score = np.dot(user_embedding, expected_embedding) / (np.linalg.norm(user_embedding) * np.linalg.norm(expected_embedding) + 1e-10) * 100
54
- user_tfidf = tfidf_vectorizer.transform([user_answer]).toarray()[0]
55
- skill_vec = skill_tfidf.get(skill.lower(), np.zeros_like(user_tfidf))
56
- relevance = np.dot(user_tfidf, skill_vec) / (np.linalg.norm(user_tfidf) * np.linalg.norm(skill_vec) + 1e-10)
57
- return skill, max(0, score * max(0.5, min(1.0, relevance)))
58
-
59
- # Recommend courses
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  def recommend_courses(skills_to_improve, user_level, upgrade=False):
61
- skill_indices = [list(questions_df['Skill'].unique()).index(skill) for skill in skills_to_improve if skill in questions_df['Skill'].unique()]
62
- if not skill_indices:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  return []
64
- similarities = course_similarity[skill_indices]
65
- popularity = courses_df['popularity'].fillna(0.8).values
66
- completion_rate = courses_df['completion_rate'].fillna(0.7).values
67
- total_scores = 0.6 * np.max(similarities, axis=0) + 0.2 * popularity + 0.2 * completion_rate
68
- target_level = 'Advanced' if upgrade else user_level
69
- idx = np.argsort(-total_scores)[:5]
70
- candidates = courses_df.iloc[idx]
71
- filtered = candidates[candidates['level'].str.contains(target_level, case=False, na=False)]
72
- return filtered[['course_title', 'Organization']].values.tolist()[:3] if not filtered.empty else candidates[['course_title', 'Organization']].values.tolist()[:3]
73
-
74
- # Recommend jobs
75
  def recommend_jobs(user_skills, user_level):
76
- if jobs_df.empty:
77
- return []
78
- skill_indices = [list(questions_df['Skill'].unique()).index(skill) for skill in user_skills if skill in questions_df['Skill'].unique()]
79
- if not skill_indices:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  return []
81
- similarities = job_similarity[skill_indices]
82
- total_scores = 0.5 * np.max(similarities, axis=0)
83
- level_map = {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}
84
- user_level_num = level_map.get(user_level, 1)
85
- level_scores = jobs_df['level'].apply(lambda x: 1 - abs(level_map.get(x, 1) - user_level_num)/2).fillna(0.5)
86
- location_pref = jobs_df['location'].apply(lambda x: 1.0 if x in ['Islamabad', 'Karachi'] else 0.7).fillna(0.7)
87
- total_job_scores = total_scores + 0.2 * level_scores + 0.1 * location_pref
88
- top_job_indices = np.argsort(-total_job_scores)[:5]
89
- return [(jobs_df.iloc[i]['job_title'], jobs_df.iloc[i]['company_name'], jobs_df.iloc[i].get('location', 'Remote')) for i in top_job_indices]
90
-
91
- # Streamlit UI
92
- st.title("Skill Assessment and Recommendations")
93
-
94
- # Simulate user signup and skill extraction
95
- if 'user_skills' not in st.session_state:
96
- st.session_state.user_skills = []
97
- st.session_state.user_level = "Intermediate"
98
-
99
- with st.form("signup_form"):
100
- name = st.text_input("Name")
101
- email = st.text_input("Email")
102
- skills_input = st.text_area("Enter your skills (comma-separated)")
103
- submit = st.form_submit_button("Sign Up")
104
- if submit and name and email and skills_input:
105
- st.session_state.user_skills = [s.strip() for s in skills_input.split(",") if s.strip()]
106
- user_data = {
107
- "name": name,
108
- "email": email,
109
- "skills": st.session_state.user_skills,
110
- "createdAt": pd.Timestamp.now(),
111
- "lastLogin": pd.Timestamp.now()
112
- }
113
- users_collection.insert_one(user_data)
114
- st.success("User registered successfully!")
115
-
116
- # Skill Assessment
117
- if st.session_state.user_skills:
118
- st.write("### Skill Assessment")
119
- user_questions = []
120
- for skill in st.session_state.user_skills:
121
- skill_questions = questions_df[questions_df['Skill'] == skill]
122
- if not skill_questions.empty:
123
- user_questions.append(skill_questions.sample(1).iloc[0])
124
- user_questions = pd.DataFrame(user_questions).reset_index(drop=True)
125
-
126
- answers = {}
127
- with st.form("assessment_form"):
128
- for idx, row in user_questions.iterrows():
129
- answers[row['Question']] = st.text_area(f"Question for {row['Skill']}: {row['Question']}", key=f"q_{idx}")
130
- submit_assessment = st.form_submit_button("Submit Assessment")
131
-
132
- if submit_assessment:
133
- scores = {}
134
  for idx, row in user_questions.iterrows():
135
- question_idx = questions_df.index[questions_df['Question'] == row['Question']][0]
136
- skill, score = evaluate_response(row['Skill'], answers.get(row['Question'], ""), question_idx)
137
- scores[skill] = max(scores.get(skill, 0), score)
138
-
139
- mean_score = np.mean(list(scores.values())) if scores else 50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
  dynamic_threshold = max(40, mean_score)
141
- weak_skills = [skill for skill, score in scores.items() if score < dynamic_threshold]
142
-
143
- st.session_state.scores = scores
144
- st.session_state.weak_skills = weak_skills
145
- st.session_state.mean_score = mean_score
146
-
147
- # Update user scores in MongoDB
148
- user = users_collection.find_one({"email": email})
149
- if user:
150
- users_collection.update_one(
151
- {"_id": user["_id"]},
152
- {"$set": {"skills_scores": scores}}
153
- )
154
-
155
- if 'scores' in st.session_state:
156
- st.write("### Assessment Results")
157
- for skill, score in st.session_state.scores.items():
158
- st.write(f"{skill}: {score:.2f}%")
159
- st.write(f"Mean Score: {st.session_state.mean_score:.2f}%")
160
- st.write(f"Weak Skills: {', '.join(st.session_state.weak_skills)}")
161
-
162
- # Recommendations
163
- st.write("### Recommended Courses")
164
- courses = recommend_courses(st.session_state.weak_skills or st.session_state.user_skills, st.session_state.user_level)
165
- for course in courses:
166
- st.write(f"- {course[0]} by {course[1]}")
167
-
168
- st.write("### Recommended Jobs")
169
- jobs = recommend_jobs(st.session_state.user_skills, st.session_state.user_level)
170
- for job in jobs:
171
- st.write(f"- {job[0]} at {job[1]} ({job[2]})")
172
-
173
- # Run the app
174
- if __name__ == "__main__":
175
- st.set_page_config(layout="wide")
 
1
+ import os
2
  import pandas as pd
3
+ import torch
4
+ from sentence_transformers import SentenceTransformer, util
 
5
  import faiss
6
+ import numpy as np
7
  import pickle
8
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
9
+ import scipy.special
10
+ from sklearn.feature_extraction.text import TfidfVectorizer
11
+ from flask import Flask, request, jsonify
12
+ import logging
13
+
14
+ # Set up logging
15
+ logging.basicConfig(level=logging.INFO)
16
+ logger = logging.getLogger(__name__)
17
+
18
+ # Disable tokenizers parallelism to avoid fork-related deadlocks
19
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
20
+
21
+ # Paths for saving artifacts
22
+ MODEL_DIR = "./saved_models"
23
+ FALLBACK_MODEL_DIR = "/tmp/saved_models"
24
+
25
+ try:
26
+ os.makedirs(MODEL_DIR, exist_ok=True)
27
+ logger.info(f"Using model directory: {MODEL_DIR}")
28
+ chosen_model_dir = MODEL_DIR
29
+ except Exception as e:
30
+ logger.warning(f"Failed to create {MODEL_DIR}: {e}. Using fallback directory.")
31
+ os.makedirs(FALLBACK_MODEL_DIR, exist_ok=True)
32
+ chosen_model_dir = FALLBACK_MODEL_DIR
33
+
34
+ # Update paths
35
+ UNIVERSAL_MODEL_PATH = os.path.join(chosen_model_dir, "universal_model")
36
+ DETECTOR_MODEL_PATH = os.path.join(chosen_model_dir, "detector_model")
37
+ TFIDF_PATH = os.path.join(chosen_model_dir, "tfidf_vectorizer.pkl")
38
+ SKILL_TFIDF_PATH = os.path.join(chosen_model_dir, "skill_tfidf.pkl")
39
+ QUESTION_ANSWER_PATH = os.path.join(chosen_model_dir, "question_to_answer.pkl")
40
+ FAISS_INDEX_PATH = os.path.join(chosen_model_dir, "faiss_index.index")
41
+ ANSWER_EMBEDDINGS_PATH = os.path.join(chosen_model_dir, "answer_embeddings.pkl")
42
+ COURSE_SIMILARITY_PATH = os.path.join(chosen_model_dir, "course_similarity.pkl")
43
+ JOB_SIMILARITY_PATH = os.path.join(chosen_model_dir, "job_similarity.pkl")
44
+
45
+ # Global variables for precomputed data
46
+ tfidf_vectorizer = None
47
+ skill_tfidf = None
48
+ question_to_answer = None
49
+ faiss_index = None
50
+ answer_embeddings = None
51
+ course_similarity = None
52
+ job_similarity = None
53
+
54
+ # Improved dataset loading with fallback
55
+ def load_dataset(file_path, required_columns=[], additional_columns=['popularity', 'completion_rate'], fallback_data=None):
56
+ try:
57
+ df = pd.read_csv(file_path)
58
+ missing_required = [col for col in required_columns if col not in df.columns]
59
+ missing_additional = [col for col in additional_columns if col not in df.columns]
60
+
61
+ # Handle missing required columns
62
+ if missing_required:
63
+ logger.warning(f"Required columns {missing_required} missing in {file_path}. Adding empty values.")
64
+ for col in missing_required:
65
+ df[col] = ""
66
+
67
+ # Handle missing additional columns (popularity, completion_rate, etc.)
68
+ if missing_additional:
69
+ logger.warning(f"Additional columns {missing_additional} missing in {file_path}. Adding default values.")
70
+ for col in missing_additional:
71
+ if col == 'popularity':
72
+ df[col] = 0.8 # Default value for popularity
73
+ elif col == 'completion_rate':
74
+ df[col] = 0.7 # Default value for completion_rate
75
+ else:
76
+ df[col] = 0.0 # Default for other additional columns
77
+
78
+ # Ensure 'level' column has valid values (not empty)
79
+ if 'level' in df.columns:
80
+ df['level'] = df['level'].apply(lambda x: 'Intermediate' if pd.isna(x) or x.strip() == "" else x)
81
+ else:
82
+ logger.warning(f"'level' column missing in {file_path}. Adding default 'Intermediate'.")
83
+ df['level'] = 'Intermediate'
84
+
85
+ return df
86
+ except ValueError as ve:
87
+ logger.error(f"ValueError loading {file_path}: {ve}. Using fallback data.")
88
+ if fallback_data is not None:
89
+ logger.info(f"Using fallback data for {file_path}")
90
+ return pd.DataFrame(fallback_data)
91
+ return None
92
+ except Exception as e:
93
+ logger.error(f"Error loading {file_path}: {e}. Using fallback data.")
94
+ if fallback_data is not None:
95
+ logger.info(f"Using fallback data for {file_path}")
96
+ return pd.DataFrame(fallback_data)
97
+ return None
98
+
99
+ # Load datasets with fallbacks
100
+ questions_df = load_dataset("Generated_Skill-Based_Questions.csv", ["Skill", "Question", "Answer"], [], {
101
+ 'Skill': ['Linux', 'Git', 'Node.js', 'Python', 'Kubernetes'],
102
+ 'Question': ['Advanced Linux question', 'Advanced Git question', 'Basic Node.js question',
103
+ 'Intermediate Python question', 'Basic Kubernetes question'],
104
+ 'Answer': ['Linux answer', 'Git answer', 'Node.js answer', 'Python answer', 'Kubernetes answer']
105
+ })
106
+
107
+ courses_df = load_dataset("coursera_course_dataset_v2_no_null.csv", ["skills", "course_title", "Organization", "level"], ['popularity', 'completion_rate'], {
108
+ 'skills': ['Linux', 'Git', 'Node.js', 'Python', 'Kubernetes'],
109
+ 'course_title': ['Linux Admin', 'Git Mastery', 'Node.js Advanced', 'Python for Data', 'Kubernetes Basics'],
110
+ 'Organization': ['Coursera', 'Udemy', 'Pluralsight', 'edX', 'Linux Foundation'],
111
+ 'level': ['Intermediate', 'Intermediate', 'Advanced', 'Advanced', 'Intermediate'],
112
+ 'popularity': [0.85, 0.9, 0.8, 0.95, 0.9],
113
+ 'completion_rate': [0.65, 0.7, 0.6, 0.8, 0.75]
114
+ })
115
+
116
+ jobs_df = load_dataset("Updated_Job_Posting_Dataset.csv", ["job_title", "company_name", "location", "required_skills", "job_description"], [], {
117
+ 'job_title': ['DevOps Engineer', 'Cloud Architect', 'Software Engineer', 'Data Scientist', 'Security Analyst'],
118
+ 'company_name': ['Tech Corp', 'Cloud Inc', 'Tech Solutions', 'Data Co', 'SecuriTech'],
119
+ 'location': ['Remote', 'Islamabad', 'Karachi', 'Remote', 'Islamabad'],
120
+ 'required_skills': ['Linux, Kubernetes', 'AWS, Kubernetes', 'Python, Node.js', 'Python, SQL', 'Cybersecurity, Linux'],
121
+ 'job_description': ['DevOps role description', 'Cloud architecture position', 'Software engineering role', 'Data science position', 'Security analyst role'],
122
+ 'level': ['Intermediate', 'Advanced', 'Intermediate', 'Intermediate', 'Intermediate']
123
+ })
124
+
125
+ # Validate questions_df
126
+ if questions_df is None or questions_df.empty:
127
+ logger.error("questions_df is empty or could not be loaded. Exiting.")
128
+ exit(1)
129
+ if not all(col in questions_df.columns for col in ["Skill", "Question", "Answer"]):
130
+ logger.error("questions_df is missing required columns. Exiting.")
131
+ exit(1)
132
+ logger.info(f"questions_df loaded with {len(questions_df)} rows. Skills available: {list(questions_df['Skill'].unique())}")
133
+
134
+ # Load or Initialize Models with Fallback
135
+ def load_universal_model():
136
+ default_model = "all-MiniLM-L6-v2"
137
+ try:
138
+ if os.path.exists(UNIVERSAL_MODEL_PATH):
139
+ logger.info(f"Loading universal model from {UNIVERSAL_MODEL_PATH}")
140
+ return SentenceTransformer(UNIVERSAL_MODEL_PATH)
141
+ else:
142
+ logger.info(f"Loading universal model: {default_model}")
143
+ model = SentenceTransformer(default_model)
144
+ model.save(UNIVERSAL_MODEL_PATH)
145
+ return model
146
+ except Exception as e:
147
+ logger.error(f"Failed to load universal model {default_model}: {e}. Exiting.")
148
+ exit(1)
149
+
150
+ universal_model = load_universal_model()
151
+
152
+ if os.path.exists(DETECTOR_MODEL_PATH):
153
+ detector_tokenizer = AutoTokenizer.from_pretrained(DETECTOR_MODEL_PATH)
154
+ detector_model = AutoModelForSequenceClassification.from_pretrained(DETECTOR_MODEL_PATH)
155
+ else:
156
+ detector_tokenizer = AutoTokenizer.from_pretrained("roberta-base-openai-detector")
157
+ detector_model = AutoModelForSequenceClassification.from_pretrained("roberta-base-openai-detector")
158
+
159
+ # Load Precomputed Resources
160
+ def load_precomputed_resources():
161
+ global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings, course_similarity, job_similarity
162
+ if all(os.path.exists(p) for p in [TFIDF_PATH, SKILL_TFIDF_PATH, QUESTION_ANSWER_PATH, FAISS_INDEX_PATH, ANSWER_EMBEDDINGS_PATH, COURSE_SIMILARITY_PATH, JOB_SIMILARITY_PATH]):
163
+ try:
164
+ with open(TFIDF_PATH, 'rb') as f: tfidf_vectorizer = pickle.load(f)
165
+ with open(SKILL_TFIDF_PATH, 'rb') as f: skill_tfidf = pickle.load(f)
166
+ with open(QUESTION_ANSWER_PATH, 'rb') as f: question_to_answer = pickle.load(f)
167
+ faiss_index = faiss.read_index(FAISS_INDEX_PATH)
168
+ with open(ANSWER_EMBEDDINGS_PATH, 'rb') as f: answer_embeddings = pickle.load(f)
169
+ with open(COURSE_SIMILARITY_PATH, 'rb') as f: course_similarity = pickle.load(f)
170
+ with open(JOB_SIMILARITY_PATH, 'rb') as f: job_similarity = pickle.load(f)
171
+ logger.info("Loaded precomputed resources successfully")
172
+ except Exception as e:
173
+ logger.error(f"Error loading precomputed resources: {e}")
174
+ precompute_resources()
175
+ else:
176
+ precompute_resources()
177
+
178
+ # Precompute Resources Offline (to be run separately)
179
+ def precompute_resources():
180
+ global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings, course_similarity, job_similarity
181
+ logger.info("Precomputing resources offline")
182
+ try:
183
+ tfidf_vectorizer = TfidfVectorizer(stop_words='english')
184
+ all_texts = questions_df['Answer'].tolist() + questions_df['Question'].tolist()
185
+ tfidf_vectorizer.fit(all_texts)
186
+
187
+ skill_tfidf = {skill.lower(): tfidf_vectorizer.transform([skill]).toarray()[0] for skill in questions_df['Skill'].unique()}
188
+ question_to_answer = dict(zip(questions_df['Question'], questions_df['Answer']))
189
+ answer_embeddings = universal_model.encode(questions_df['Answer'].tolist(), batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu").cpu().numpy()
190
+
191
+ faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
192
+ faiss_index.add(answer_embeddings)
193
+
194
+ # Precompute course similarities
195
+ course_skills = courses_df['skills'].fillna("").tolist()
196
+ course_embeddings = universal_model.encode(course_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")
197
+ skill_embeddings = universal_model.encode(questions_df['Skill'].unique().tolist(), batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")
198
+ course_similarity = util.pytorch_cos_sim(skill_embeddings, course_embeddings).cpu().numpy()
199
+
200
+ # Precompute job similarities
201
+ job_skills = jobs_df['required_skills'].fillna("").tolist()
202
+ job_embeddings = universal_model.encode(job_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")
203
+ job_similarity = util.pytorch_cos_sim(skill_embeddings, job_embeddings).cpu().numpy()
204
+
205
+ # Save precomputed resources
206
+ with open(TFIDF_PATH, 'wb') as f: pickle.dump(tfidf_vectorizer, f)
207
+ with open(SKILL_TFIDF_PATH, 'wb') as f: pickle.dump(skill_tfidf, f)
208
+ with open(QUESTION_ANSWER_PATH, 'wb') as f: pickle.dump(question_to_answer, f)
209
+ faiss.write_index(faiss_index, FAISS_INDEX_PATH)
210
+ with open(ANSWER_EMBEDDINGS_PATH, 'wb') as f: pickle.dump(answer_embeddings, f)
211
+ with open(COURSE_SIMILARITY_PATH, 'wb') as f: pickle.dump(course_similarity, f)
212
+ with open(JOB_SIMILARITY_PATH, 'wb') as f: pickle.dump(job_similarity, f)
213
+ universal_model.save(UNIVERSAL_MODEL_PATH)
214
+ logger.info(f"Precomputed resources saved to {chosen_model_dir}")
215
+ except Exception as e:
216
+ logger.error(f"Error during precomputation: {e}")
217
+ raise
218
+
219
+ # Evaluation with precomputed data
220
+ def evaluate_response(args):
221
+ try:
222
+ skill, user_answer, question_idx = args
223
+ if not user_answer:
224
+ return skill, 0.0, False
225
+
226
+ inputs = detector_tokenizer(user_answer, return_tensors="pt", truncation=True, max_length=512)
227
+ with torch.no_grad():
228
+ logits = detector_model(**inputs).logits
229
+ probs = scipy.special.softmax(logits, axis=1).tolist()[0]
230
+ is_ai = probs[1] > 0.5
231
+
232
+ user_embedding = universal_model.encode([user_answer], batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")[0]
233
+ expected_embedding = torch.tensor(answer_embeddings[question_idx])
234
+ score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100
235
+
236
+ user_tfidf = tfidf_vectorizer.transform([user_answer]).toarray()[0]
237
+ skill_vec = skill_tfidf.get(skill.lower(), np.zeros_like(user_tfidf))
238
+ relevance = np.dot(user_tfidf, skill_vec) / (np.linalg.norm(user_tfidf) * np.linalg.norm(skill_vec) + 1e-10)
239
+ score *= max(0.5, min(1.0, relevance))
240
+
241
+ return skill, round(max(0, score), 2), is_ai
242
+ except Exception as e:
243
+ logger.error(f"Evaluation error for {skill}: {e}")
244
+ return skill, 0.0, False
245
+
246
+ # Course recommendation with precomputed similarity
247
  def recommend_courses(skills_to_improve, user_level, upgrade=False):
248
+ try:
249
+ if not skills_to_improve or courses_df.empty:
250
+ logger.info("No skills to improve or courses_df is empty.")
251
+ return []
252
+
253
+ skill_indices = [list(questions_df['Skill'].unique()).index(skill) for skill in skills_to_improve if skill in questions_df['Skill'].unique()]
254
+ if not skill_indices:
255
+ logger.info("No matching skill indices found.")
256
+ return []
257
+
258
+ similarities = course_similarity[skill_indices]
259
+ # Use default arrays to avoid KeyError
260
+ popularity = courses_df['popularity'].values if 'popularity' in courses_df else np.full(len(courses_df), 0.8)
261
+ completion_rate = courses_df['completion_rate'].values if 'completion_rate' in courses_df else np.full(len(courses_df), 0.7)
262
+ total_scores = 0.6 * np.max(similarities, axis=0) + 0.2 * popularity + 0.2 * completion_rate
263
+
264
+ target_level = 'Advanced' if upgrade else user_level
265
+ idx = np.argsort(-total_scores)[:5]
266
+ candidates = courses_df.iloc[idx]
267
+
268
+ # Filter by level, but fallback to all courses if none match
269
+ filtered_candidates = candidates[candidates['level'].str.contains(target_level, case=False, na=False)]
270
+ if filtered_candidates.empty:
271
+ logger.warning(f"No courses found for level {target_level}. Returning top courses regardless of level.")
272
+ filtered_candidates = candidates
273
+
274
+ return filtered_candidates[['course_title', 'Organization']].values.tolist()[:3]
275
+ except Exception as e:
276
+ logger.error(f"Course recommendation error: {e}")
277
  return []
278
+
279
+ # Job recommendation with precomputed similarity
 
 
 
 
 
 
 
 
 
280
  def recommend_jobs(user_skills, user_level):
281
+ try:
282
+ if jobs_df.empty:
283
+ return []
284
+
285
+ skill_indices = [list(questions_df['Skill'].unique()).index(skill) for skill in user_skills if skill in questions_df['Skill'].unique()]
286
+ if not skill_indices:
287
+ return []
288
+
289
+ similarities = job_similarity[skill_indices]
290
+ total_scores = 0.5 * np.max(similarities, axis=0)
291
+
292
+ if 'level' not in jobs_df.columns:
293
+ jobs_df['level'] = 'Intermediate'
294
+ level_col = jobs_df['level'].astype(str)
295
+ level_map = {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}
296
+ user_level_num = level_map.get(user_level, 1)
297
+ level_scores = level_col.apply(lambda x: 1 - abs(level_map.get(x, 1) - user_level_num)/2)
298
+
299
+ location_pref = jobs_df.get('location', pd.Series(['Remote'] * len(jobs_df))).apply(lambda x: 1.0 if x in ['Islamabad', 'Karachi'] else 0.7)
300
+ total_job_scores = total_scores + 0.2 * level_scores + 0.1 * location_pref
301
+ top_job_indices = np.argsort(-total_job_scores)[:5]
302
+
303
+ return [(jobs_df.iloc[i]['job_title'], jobs_df.iloc[i]['company_name'],
304
+ jobs_df.iloc[i].get('location', 'Remote')) for i in top_job_indices]
305
+ except Exception as e:
306
+ logger.error(f"Job recommendation error: {e}")
307
  return []
308
+
309
+ # Flask application setup
310
+ app = Flask(__name__)
311
+
312
+ @app.route('/')
313
+ def health_check():
314
+ return jsonify({"status": "active", "model_dir": chosen_model_dir})
315
+
316
+ @app.route('/assess', methods=['POST'])
317
+ def assess_skills():
318
+ try:
319
+ data = request.get_json()
320
+ if not data or 'skills' not in data or 'answers' not in data:
321
+ return jsonify({"error": "Missing required fields"}), 400
322
+
323
+ user_skills = [s.strip() for s in data['skills'] if isinstance(s, str)]
324
+ answers = [a.strip() for a in data['answers'] if isinstance(a, str)]
325
+ user_level = data.get('user_level', 'Intermediate').strip()
326
+
327
+ if len(answers) != len(user_skills):
328
+ return jsonify({"error": "Answers count must match skills count"}), 400
329
+
330
+ load_precomputed_resources() # Load precomputed resources before processing
331
+
332
+ user_questions = []
333
+ for skill in user_skills:
334
+ skill_questions = questions_df[questions_df['Skill'] == skill]
335
+ if not skill_questions.empty:
336
+ user_questions.append(skill_questions.sample(1).iloc[0])
337
+ else:
338
+ user_questions.append({
339
+ 'Skill': skill,
340
+ 'Question': f"What are the best practices for using {skill} in a production environment?",
341
+ 'Answer': f"Best practices for {skill} include proper documentation, monitoring, and security measures."
342
+ })
343
+ user_questions = pd.DataFrame(user_questions).reset_index(drop=True)
344
+
345
+ user_responses = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346
  for idx, row in user_questions.iterrows():
347
+ answer = answers[idx]
348
+ if not answer or answer.lower() == 'skip':
349
+ user_responses.append((row['Skill'], None, None))
350
+ else:
351
+ question_idx = questions_df.index[questions_df['Question'] == row['Question']][0]
352
+ user_responses.append((row['Skill'], answer, question_idx))
353
+
354
+ results = [evaluate_response(response) for response in user_responses]
355
+
356
+ user_scores = {}
357
+ ai_flags = {}
358
+ scores_list = []
359
+ skipped_questions = [f"{skill} ({question})" for skill, user_code, _ in user_responses if not user_code]
360
+ for skill, score, is_ai in results:
361
+ if skill in user_scores:
362
+ user_scores[skill] = max(user_scores[skill], score)
363
+ ai_flags[skill] = ai_flags[skill] or is_ai
364
+ else:
365
+ user_scores[skill] = score
366
+ ai_flags[skill] = is_ai
367
+ scores_list.append(score)
368
+
369
+ mean_score = np.mean(scores_list) if scores_list else 50
370
  dynamic_threshold = max(40, mean_score)
371
+ weak_skills = [skill for skill, score in user_scores.items() if score < dynamic_threshold]
372
+
373
+ courses = recommend_courses(weak_skills or user_skills, user_level, upgrade=not weak_skills)
374
+ jobs = recommend_jobs(user_skills, user_level)
375
+
376
+ return jsonify({
377
+ "assessment_results": {
378
+ "skills": [
379
+ {
380
+ "skill": skill,
381
+ "progress": f"{'■' * int(score//10)}{'-' * (10 - int(score//10))}",
382
+ "score": f"{score:.2f} %",
383
+ "origin": "AI-Generated" if is_ai else "Human-Written"
384
+ } for skill, score, is_ai in results
385
+ ],
386
+ "mean_score": mean_score,
387
+ "dynamic_threshold": dynamic_threshold,
388
+ "weak_skills": weak_skills,
389
+ "skipped_questions": skipped_questions
390
+ },
391
+ "recommended_courses": courses[:3],
392
+ "recommended_jobs": jobs[:5]
393
+ })
394
+ except Exception as e:
395
+ logger.error(f"Assessment error: {e}")
396
+ return jsonify({"error": "Internal server error"}), 500
397
+
398
+ if __name__ == '__main__':
399
+ app.run(host='0.0.0.0', port=7860, threaded=True)