File size: 1,589 Bytes
f2a274f
 
 
 
e22fbd5
 
 
 
 
 
 
f2a274f
 
e22fbd5
f672f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e22fbd5
 
 
 
 
 
 
 
 
 
 
665ae8a
d9f7b70
f2a274f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gradio as gr
import pandas as pd


#Models:
# IlyaGusev/saiga_llama3_8b
# Vikhrmodels/Vikhr-Nemo-12B-Instruct-R-21-09-24
# TinyLlama
# Google-gemma-2-27b-it
# mistralai/Mistral-Nemo-Instruct-2407
# Vikhrmodels/Vikhr-Qwen-2.5-0.5b-Instruct


benchmark_data = {
    'Model': [
        'TheBloke/llama3-13b',              # LLaMA3
        'Vikhrmodels/Vikhr-Nemo-12B',       # Vikhr
        'TinyLLaMA/TinyLlama-1.1B',         # TinyLLaMA
        'mistralai/Mistral-7B-instruct',     # Mistral
        'Qwen/Qwen-7B'                       # Qwen
    ],
    'Creativity Score': [
        37.75,  # LLaMA3
        46.00,  # Vikhr
        6.50,   # TinyLLaMA
        23.75,  # Mistral
        8.25    # Qwen
    ],
    'Diversity Score': [
        49.50,  # LLaMA3
        52.00,  # Vikhr
        14.50,  # TinyLLaMA
        38.50,  # Mistral
        15.55   # Qwen
    ],
    'Relevance Score': [
        79.25,  # LLaMA3
        87.50,  # Vikhr
        18.50,  # TinyLLaMA
        76.75,  # Mistral
        34.25   # Qwen
    ],
    'Average Score': [
        55.50,  # LLaMA3
        61.83,  # Vikhr
        13.17,  # TinyLLaMA
        46.33,  # Mistral
        19.35   # Qwen
    ]
}
def display_results():
    df = pd.DataFrame(benchmark_data)
    return df

# Create the interface
with gr.Blocks() as demo:
    gr.Markdown("# Model Benchmark Results")
    
    # Display results in a DataFrame
    output = gr.Dataframe(
        headers=["Model", "Creativity Score", "Coherence Score", "Diversity Score"],
        interactive=True
    )

if __name__ == "__main__":
    demo.launch()