Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,147 +1,40 @@
|
|
1 |
import gradio as gr
|
2 |
-
import time
|
3 |
-
import json
|
4 |
import pandas as pd
|
5 |
-
from typing import List, Dict, Any
|
6 |
|
7 |
-
class BenchmarkSystem:
|
8 |
-
def __init__(self):
|
9 |
-
self.results = {}
|
10 |
-
|
11 |
-
def run_benchmark(self,
|
12 |
-
model_name: str,
|
13 |
-
test_cases: List[str],
|
14 |
-
system_prompt: str = "") -> Dict[str, Any]:
|
15 |
-
"""
|
16 |
-
Run benchmark tests and measure performance metrics
|
17 |
-
"""
|
18 |
-
results = {
|
19 |
-
"model_name": model_name,
|
20 |
-
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
|
21 |
-
"total_tokens": 0,
|
22 |
-
"total_time": 0,
|
23 |
-
"responses": [],
|
24 |
-
"metrics": {}
|
25 |
-
}
|
26 |
-
|
27 |
-
start_time = time.time()
|
28 |
-
|
29 |
-
# Simulate processing test cases
|
30 |
-
for test in test_cases:
|
31 |
-
# Here you would add actual model inference
|
32 |
-
# This is a placeholder for demonstration
|
33 |
-
time.sleep(0.5) # Simulate processing time
|
34 |
-
results["responses"].append({
|
35 |
-
"input": test,
|
36 |
-
"output": f"Sample response for: {test}",
|
37 |
-
"tokens": len(test.split()),
|
38 |
-
"time": 0.5
|
39 |
-
})
|
40 |
-
|
41 |
-
results["total_time"] = time.time() - start_time
|
42 |
-
results["total_tokens"] = sum(r["tokens"] for r in results["responses"])
|
43 |
-
|
44 |
-
# Calculate aggregate metrics
|
45 |
-
results["metrics"] = {
|
46 |
-
"avg_response_time": results["total_time"] / len(test_cases),
|
47 |
-
"avg_tokens_per_response": results["total_tokens"] / len(test_cases)
|
48 |
-
}
|
49 |
-
|
50 |
-
self.results[model_name] = results
|
51 |
-
return results
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
output += "Metrics:\n"
|
61 |
-
for metric, value in results["metrics"].items():
|
62 |
-
output += f"- {metric}: {value:.2f}\n"
|
63 |
-
|
64 |
-
return output
|
65 |
|
66 |
-
def save_results(results: Dict[str, Any], filename: str = "benchmark_results.json"):
|
67 |
-
"""Save benchmark results to a file"""
|
68 |
-
with open(filename, "w") as f:
|
69 |
-
json.dump(results, f, indent=2)
|
70 |
-
return f"Results saved to {filename}"
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
benchmark = BenchmarkSystem()
|
79 |
-
|
80 |
-
# Parse test cases (assuming one per line)
|
81 |
-
test_cases_list = [t.strip() for t in test_cases.split("\n") if t.strip()]
|
82 |
-
|
83 |
-
# Run benchmark
|
84 |
-
results = benchmark.run_benchmark(
|
85 |
-
model_name=model_name,
|
86 |
-
test_cases=test_cases_list,
|
87 |
-
system_prompt=system_prompt
|
88 |
-
)
|
89 |
-
|
90 |
-
# Create DataFrame for response details
|
91 |
-
df = pd.DataFrame([
|
92 |
-
{
|
93 |
-
"Input": r["input"],
|
94 |
-
"Output": r["output"],
|
95 |
-
"Tokens": r["tokens"],
|
96 |
-
"Time (s)": r["time"]
|
97 |
-
}
|
98 |
-
for r in results["responses"]
|
99 |
-
])
|
100 |
-
|
101 |
-
# Save results
|
102 |
-
save_results(results)
|
103 |
-
|
104 |
-
return format_results(results), df
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
label="System Prompt (Optional)",
|
119 |
-
placeholder="Enter system prompt if applicable",
|
120 |
-
lines=2
|
121 |
-
)
|
122 |
-
test_cases = gr.Textbox(
|
123 |
-
label="Test Cases",
|
124 |
-
placeholder="Enter test cases (one per line)",
|
125 |
-
lines=5
|
126 |
-
)
|
127 |
-
run_button = gr.Button("Run Benchmark")
|
128 |
-
|
129 |
-
with gr.Column():
|
130 |
-
results_text = gr.Textbox(
|
131 |
-
label="Benchmark Results",
|
132 |
-
lines=10,
|
133 |
-
readonly=True
|
134 |
-
)
|
135 |
-
results_table = gr.DataFrame(
|
136 |
-
label="Detailed Results",
|
137 |
-
headers=["Input", "Output", "Tokens", "Time (s)"]
|
138 |
-
)
|
139 |
-
|
140 |
-
run_button.click(
|
141 |
-
fn=run_benchmark_interface,
|
142 |
-
inputs=[model_name, test_cases, system_prompt],
|
143 |
-
outputs=[results_text, results_table]
|
144 |
)
|
|
|
|
|
|
|
|
|
145 |
|
146 |
if __name__ == "__main__":
|
147 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import pandas as pd
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
#Models:
|
6 |
+
# IlyaGusev/saiga_llama3_8b
|
7 |
+
# Vikhrmodels/Vikhr-Nemo-12B-Instruct-R-21-09-24
|
8 |
+
# TinyLlama
|
9 |
+
# Google-gemma-2-27b-it
|
10 |
+
# mistralai/Mistral-Nemo-Instruct-2407
|
11 |
+
# Vikhrmodels/Vikhr-Qwen-2.5-0.5b-Instruct
|
|
|
|
|
|
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
benchmark_data = {
|
15 |
+
'Model': ['IlyaGusev/saiga_llama3_8b', 'Vikhrmodels/Vikhr-Nemo-12B-Instruct-R-21-09-24', "TinyLlama", 'Google-gemma-2-27b-it', 'mistralai/Mistral-Nemo-Instruct-2407', 'Vikhrmodels/Vikhr-Qwen-2.5-0.5b-Instruct'],
|
16 |
+
'Creativity Score': [78.5, 82.3, 85.7, 83.1, 85.6, 76.5, ],
|
17 |
+
'Coherence Score': [75.2, 80.1, 84.3, 81.9, 88.5, 76.6],
|
18 |
+
'Diversity Score': [25.3, 27.8, 31.2, 29.5, 88.4, 74.6]
|
19 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
def display_results():
|
22 |
+
df = pd.DataFrame(benchmark_data)
|
23 |
+
return df
|
24 |
+
|
25 |
+
# Create the interface
|
26 |
+
with gr.Blocks() as demo:
|
27 |
+
gr.Markdown("# Model Benchmark Results")
|
28 |
+
|
29 |
+
# Display results in a DataFrame
|
30 |
+
output = gr.Dataframe(
|
31 |
+
headers=["Model", "GLUE Score", "SQuAD F1", "MMLU Score"],
|
32 |
+
interactive=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
)
|
34 |
+
|
35 |
+
# Button to refresh/display results
|
36 |
+
refresh_btn = gr.Button("Show Results")
|
37 |
+
refresh_btn.click(fn=display_results, outputs=output)
|
38 |
|
39 |
if __name__ == "__main__":
|
40 |
demo.launch()
|