Spaces:
Sleeping
Sleeping
Delete src
Browse files- src/streamlit_app.py +0 -334
src/streamlit_app.py
DELETED
|
@@ -1,334 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import streamlit as st
|
| 3 |
-
from PIL import Image
|
| 4 |
-
import pandas as pd
|
| 5 |
-
from datetime import datetime
|
| 6 |
-
from transformers import (
|
| 7 |
-
AutoFeatureExtractor,
|
| 8 |
-
AutoModelForImageClassification,
|
| 9 |
-
AutoTokenizer,
|
| 10 |
-
AutoModelForSeq2SeqLM,
|
| 11 |
-
pipeline )
|
| 12 |
-
import requests
|
| 13 |
-
from geopy.geocoders import Nominatim
|
| 14 |
-
import folium
|
| 15 |
-
from streamlit_folium import st_folium
|
| 16 |
-
import cv2
|
| 17 |
-
import numpy as np
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
st.set_page_config(page_title="Skin Cancer Dashboard", layout="wide")
|
| 21 |
-
|
| 22 |
-
# --- Configuration ---
|
| 23 |
-
# Ensure you have set your Hugging Face token as an environment variable:
|
| 24 |
-
# export HF_TOKEN="YOUR_TOKEN_HERE"
|
| 25 |
-
MODEL_NAME = "Anwarkh1/Skin_Cancer-Image_Classification"
|
| 26 |
-
LLM_NAME = "google/flan-t5-xl"
|
| 27 |
-
HF_TOKEN = ".."
|
| 28 |
-
DATA_DIR = "data/harvard_dataset" # Path where you download and unpack the Harvard Dataverse dataset
|
| 29 |
-
DIARY_CSV = "diary.csv"
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
# Initialize session state defaults
|
| 33 |
-
if 'initialized' not in st.session_state:
|
| 34 |
-
st.session_state['label'] = None
|
| 35 |
-
st.session_state['score'] = None
|
| 36 |
-
st.session_state['mole_id'] = ''
|
| 37 |
-
st.session_state['geo_location'] = ''
|
| 38 |
-
st.session_state['chat_history'] = []
|
| 39 |
-
st.session_state['initialized'] = True
|
| 40 |
-
|
| 41 |
-
# Initialize geolocator for free geocoding
|
| 42 |
-
geolocator = Nominatim(user_agent="skin-dashboard", timeout = 10)
|
| 43 |
-
|
| 44 |
-
# --- Load Model & Feature Extractor ---
|
| 45 |
-
@st.cache_resource
|
| 46 |
-
def load_image_model(token: str):
|
| 47 |
-
extractor = AutoFeatureExtractor.from_pretrained(
|
| 48 |
-
MODEL_NAME,
|
| 49 |
-
use_auth_token=token
|
| 50 |
-
)
|
| 51 |
-
model = AutoModelForImageClassification.from_pretrained(
|
| 52 |
-
MODEL_NAME,
|
| 53 |
-
use_auth_token=token
|
| 54 |
-
)
|
| 55 |
-
return pipeline(
|
| 56 |
-
"image-classification",
|
| 57 |
-
model=model,
|
| 58 |
-
feature_extractor=extractor,
|
| 59 |
-
device=0 # set to GPU index or -1 for CPU
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
@st.cache_resource
|
| 63 |
-
def load_llm(token: str):
|
| 64 |
-
|
| 65 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 66 |
-
LLM_NAME,
|
| 67 |
-
use_auth_token=token
|
| 68 |
-
)
|
| 69 |
-
# Use Seq2SeqLM for T5-style (text2text) models:
|
| 70 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 71 |
-
LLM_NAME,
|
| 72 |
-
use_auth_token=token,
|
| 73 |
-
)
|
| 74 |
-
return pipeline(
|
| 75 |
-
"text2text-generation",
|
| 76 |
-
model=model,
|
| 77 |
-
tokenizer=tokenizer,
|
| 78 |
-
device_map="auto", # or device=0 for single GPU / -1 for CPU
|
| 79 |
-
max_length=10000,
|
| 80 |
-
num_beams=5,
|
| 81 |
-
no_repeat_ngram_size=2,
|
| 82 |
-
early_stopping=True,
|
| 83 |
-
|
| 84 |
-
)
|
| 85 |
-
classifier = load_image_model(HF_TOKEN) if HF_TOKEN else None
|
| 86 |
-
explainer = load_llm(HF_TOKEN) if HF_TOKEN else None
|
| 87 |
-
|
| 88 |
-
# --- Diary Init ----
|
| 89 |
-
|
| 90 |
-
if not os.path.exists(DIARY_CSV):
|
| 91 |
-
pd.DataFrame(
|
| 92 |
-
columns=["timestamp", "image_path", "mole_id", "geo_location", "label", "score",
|
| 93 |
-
"body_location", "prior_consultation", "pain", "itch"]
|
| 94 |
-
).to_csv(DIARY_CSV, index=False)
|
| 95 |
-
|
| 96 |
-
# --- Save entry helper
|
| 97 |
-
|
| 98 |
-
def save_entry(img_path: str, mole_id: str, geo_location: str,
|
| 99 |
-
label: str, score: float,
|
| 100 |
-
body_location: str, prior_consult: str, pain: str, itch: str):
|
| 101 |
-
df = pd.read_csv(DIARY_CSV)
|
| 102 |
-
entry = {
|
| 103 |
-
"timestamp": datetime.now().isoformat(),
|
| 104 |
-
"image_path": img_path,
|
| 105 |
-
"mole_id": mole_id,
|
| 106 |
-
"geo_location": geo_location,
|
| 107 |
-
"label": label,
|
| 108 |
-
"score": float(score),
|
| 109 |
-
"body_location": body_location,
|
| 110 |
-
"prior_consultation": prior_consult,
|
| 111 |
-
"pain": pain,
|
| 112 |
-
"itch": itch
|
| 113 |
-
}
|
| 114 |
-
df.loc[len(df)] = entry
|
| 115 |
-
df.to_csv(DIARY_CSV, index=False)
|
| 116 |
-
|
| 117 |
-
# --- Preprocessing Functions ---
|
| 118 |
-
def remove_hair(img: np.ndarray) -> np.ndarray:
|
| 119 |
-
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
| 120 |
-
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (17, 17))
|
| 121 |
-
blackhat = cv2.morphologyEx(gray, cv2.MORPH_BLACKHAT, kernel)
|
| 122 |
-
_, mask = cv2.threshold(blackhat, 10, 255, cv2.THRESH_BINARY)
|
| 123 |
-
return cv2.inpaint(img, mask, 1, cv2.INPAINT_TELEA)
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
def preprocess(img: Image.Image, size: int = 224) -> Image.Image:
|
| 127 |
-
arr = np.array(img)
|
| 128 |
-
bgr = cv2.cvtColor(arr, cv2.COLOR_RGB2BGR)
|
| 129 |
-
bgr = remove_hair(bgr)
|
| 130 |
-
bgr = cv2.bilateralFilter(bgr, d=9, sigmaColor=75, sigmaSpace=75)
|
| 131 |
-
lab = cv2.cvtColor(bgr, cv2.COLOR_BGR2LAB)
|
| 132 |
-
l, a, b = cv2.split(lab)
|
| 133 |
-
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
| 134 |
-
cl = clahe.apply(l)
|
| 135 |
-
merged = cv2.merge((cl, a, b))
|
| 136 |
-
bgr = cv2.cvtColor(merged, cv2.COLOR_LAB2BGR)
|
| 137 |
-
h, w = bgr.shape[:2]
|
| 138 |
-
scale = size / max(h, w)
|
| 139 |
-
nh, nw = int(h*scale), int(w*scale)
|
| 140 |
-
resized = cv2.resize(bgr, (nw, nh), interpolation=cv2.INTER_AREA)
|
| 141 |
-
canvas = np.full((size, size, 3), 128, dtype=np.uint8)
|
| 142 |
-
top, left = (size-nh)//2, (size-nw)//2
|
| 143 |
-
canvas[top:top+nh, left:left+nw] = resized
|
| 144 |
-
rgb = cv2.cvtColor(canvas, cv2.COLOR_BGR2RGB)
|
| 145 |
-
return Image.fromarray(rgb)
|
| 146 |
-
|
| 147 |
-
# -----Streamlit layout ----
|
| 148 |
-
st.title("🩺 Skin Cancer Recognition Dashboard")
|
| 149 |
-
menu = ["Scan Mole","Chat","Diary", "Dataset Explorer"]
|
| 150 |
-
choice = st.sidebar.selectbox("Navigation", menu)
|
| 151 |
-
|
| 152 |
-
# --- Initialize Scan a Mole ---
|
| 153 |
-
if choice == "Scan Mole":
|
| 154 |
-
st.header("🔍 Scan a Mole")
|
| 155 |
-
if not classifier:
|
| 156 |
-
st.error("Missing HF_TOKEN.")
|
| 157 |
-
st.stop()
|
| 158 |
-
|
| 159 |
-
upload = st.file_uploader("Upload a skin image", type=["jpg","jpeg","png"])
|
| 160 |
-
if not upload:
|
| 161 |
-
st.info("Please upload an image to begin.")
|
| 162 |
-
st.stop()
|
| 163 |
-
|
| 164 |
-
raw = Image.open(upload).convert("RGB")
|
| 165 |
-
st.image(raw, caption="Original", use_container_width=True)
|
| 166 |
-
|
| 167 |
-
proc = preprocess(raw)
|
| 168 |
-
st.image(proc, caption="Preprocessed", use_container_width=True)
|
| 169 |
-
|
| 170 |
-
mole = st.text_input("Mole ID")
|
| 171 |
-
city = st.text_input("Geographic location")
|
| 172 |
-
body = st.selectbox("Body location", ["Face","Scalp","Neck","Chest","Back","Arm","Hand","Leg","Foot","Other"])
|
| 173 |
-
prior = st.radio("Prior consult?", ["Yes","No"], horizontal=True)
|
| 174 |
-
pain = st.radio("Pain?", ["Yes","No"], horizontal=True)
|
| 175 |
-
itch = st.radio("Itch?", ["Yes","No"], horizontal=True)
|
| 176 |
-
|
| 177 |
-
if st.button("Classify"):
|
| 178 |
-
if not mole or not city:
|
| 179 |
-
st.error("Enter ID and location.")
|
| 180 |
-
else:
|
| 181 |
-
with st.spinner("Analyzing..."):
|
| 182 |
-
out = classifier(proc)
|
| 183 |
-
lbl, scr = out[0]["label"], out[0]["score"]
|
| 184 |
-
save_dir = os.path.join("scans", f"{mole}_{datetime.now().timestamp()}.png")
|
| 185 |
-
os.makedirs(os.path.dirname(save_dir), exist_ok=True)
|
| 186 |
-
raw.save(save_dir)
|
| 187 |
-
save_entry(save_dir, mole, city, lbl, scr, body, prior, pain, itch)
|
| 188 |
-
st.session_state.update({
|
| 189 |
-
'label': lbl,
|
| 190 |
-
'score': scr,
|
| 191 |
-
'mole_id': mole,
|
| 192 |
-
'geo_location': city
|
| 193 |
-
})
|
| 194 |
-
|
| 195 |
-
if st.session_state['label']:
|
| 196 |
-
st.success(f"Prediction: {st.session_state['label']} (score {st.session_state['score']:.2f})")
|
| 197 |
-
if explainer:
|
| 198 |
-
with st.spinner("Explaining..."):
|
| 199 |
-
text = explainer(f"Explain {st.session_state['label']} and recommendation.")[0]['generated_text']
|
| 200 |
-
st.markdown("### Explanation"); st.write(text)
|
| 201 |
-
|
| 202 |
-
loc = geolocator.geocode(st.session_state['geo_location'])
|
| 203 |
-
if loc:
|
| 204 |
-
m = folium.Map([loc.latitude, loc.longitude], zoom_start=12)
|
| 205 |
-
folium.Marker([loc.latitude, loc.longitude], "You").add_to(m)
|
| 206 |
-
resp = requests.post(
|
| 207 |
-
"https://overpass-api.de/api/interpreter",
|
| 208 |
-
data={"data": f"[out:json];node(around:5000,{loc.latitude},{loc.longitude})[~\"^(amenity|healthcare)$\"~\"clinic|doctors\"];out;"}
|
| 209 |
-
)
|
| 210 |
-
for el in resp.json().get('elements', []):
|
| 211 |
-
tags = el.get('tags', {});
|
| 212 |
-
lat = el.get('lat') or el['center']['lat']; lon = el.get('lon') or el['center']['lon']
|
| 213 |
-
folium.Marker([lat, lon], tags.get('name','Clinic')).add_to(m)
|
| 214 |
-
st.markdown("### Nearby Clinics"); st_folium(m, width=700)
|
| 215 |
-
|
| 216 |
-
# --- Chat Tab ---
|
| 217 |
-
elif choice == "Chat":
|
| 218 |
-
st.header("💬 Follow-Up Chat")
|
| 219 |
-
if not st.session_state['label']:
|
| 220 |
-
st.info("Please perform a scan first in the 'Scan Mole' tab.")
|
| 221 |
-
else:
|
| 222 |
-
lbl = st.session_state['label']
|
| 223 |
-
scr = st.session_state['score']
|
| 224 |
-
mid = st.session_state['mole_id']
|
| 225 |
-
gloc = st.session_state['geo_location']
|
| 226 |
-
st.markdown(f"**Context:** prediction for **{mid}** at **{gloc}** is **{lbl}** (confidence {scr:.2f}).")
|
| 227 |
-
|
| 228 |
-
# New user message comes first for immediate loop
|
| 229 |
-
user_q = st.chat_input("Ask a follow-up question:", key="chat_input")
|
| 230 |
-
if user_q and explainer:
|
| 231 |
-
st.session_state['chat_history'].append({'role':'user','content':user_q})
|
| 232 |
-
system_p = "You are a dermatology assistant. Provide concise medical advice without clarifying questions."
|
| 233 |
-
tpl = (
|
| 234 |
-
f"{system_p}\nContext: prediction is {lbl} with confidence {scr:.2f}.\n"
|
| 235 |
-
f"User: {user_q}\nAssistant:"
|
| 236 |
-
)
|
| 237 |
-
with st.spinner("Generating response..."):
|
| 238 |
-
reply = explainer(tpl)[0]['generated_text']
|
| 239 |
-
st.session_state['chat_history'].append({'role':'assistant','content':reply})
|
| 240 |
-
|
| 241 |
-
# Display the updated chat history
|
| 242 |
-
for msg in st.session_state['chat_history']:
|
| 243 |
-
prefix = 'You' if msg['role']=='user' else 'AI'
|
| 244 |
-
st.markdown(f"**{prefix}:** {msg['content']}")
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
# --- Diary Page ---
|
| 248 |
-
elif choice == "Diary":
|
| 249 |
-
st.header("📖 Skin Cancer Diary")
|
| 250 |
-
df = pd.read_csv(DIARY_CSV)
|
| 251 |
-
df['timestamp'] = pd.to_datetime(df['timestamp'])
|
| 252 |
-
if df.empty:
|
| 253 |
-
st.info("No diary entries yet.")
|
| 254 |
-
else:
|
| 255 |
-
mole_ids = sorted(df['mole_id'].unique())
|
| 256 |
-
sel = st.selectbox("Select Mole to View", ['All'] + mole_ids, key="diary_sel")
|
| 257 |
-
if sel == 'All':
|
| 258 |
-
# Display moles in columns (max 3 per row)
|
| 259 |
-
chunks = [mole_ids[i:i+3] for i in range(0, len(mole_ids), 3)]
|
| 260 |
-
for group in chunks:
|
| 261 |
-
cols = st.columns(len(group))
|
| 262 |
-
for col, mid in zip(cols, group):
|
| 263 |
-
with col:
|
| 264 |
-
st.subheader(mid)
|
| 265 |
-
entries = df[df['mole_id'] == mid].sort_values('timestamp')
|
| 266 |
-
# Show image timeline
|
| 267 |
-
for _, row in entries.iterrows():
|
| 268 |
-
if os.path.exists(row['image_path']):
|
| 269 |
-
st.image(
|
| 270 |
-
row['image_path'],
|
| 271 |
-
width=150,
|
| 272 |
-
caption=f"{row['timestamp'].strftime('%Y-%m-%d')} — {row['score']:.2f}"
|
| 273 |
-
)
|
| 274 |
-
st.write(f"Total scans: {len(entries)}")
|
| 275 |
-
else:
|
| 276 |
-
# Detailed view for a single mole
|
| 277 |
-
entries = df[df['mole_id'] == sel].sort_values('timestamp')
|
| 278 |
-
if entries.empty:
|
| 279 |
-
st.warning(f"No entries for {sel}.")
|
| 280 |
-
else:
|
| 281 |
-
# Score over time
|
| 282 |
-
st.line_chart(entries.set_index('timestamp')['score'])
|
| 283 |
-
st.markdown("#### Image Timeline")
|
| 284 |
-
for _, row in entries.iterrows():
|
| 285 |
-
if os.path.exists(row['image_path']):
|
| 286 |
-
st.image(
|
| 287 |
-
row['image_path'],
|
| 288 |
-
width=200,
|
| 289 |
-
caption=(
|
| 290 |
-
f"{row['timestamp'].strftime('%Y-%m-%d %H:%M')} — "
|
| 291 |
-
f"Score: {row['score']:.2f}"
|
| 292 |
-
)
|
| 293 |
-
)
|
| 294 |
-
st.markdown("#### Details")
|
| 295 |
-
st.dataframe(
|
| 296 |
-
entries[
|
| 297 |
-
['timestamp','geo_location','label','score',
|
| 298 |
-
'body_location','prior_consultation','pain','itch']
|
| 299 |
-
]
|
| 300 |
-
.rename(columns={
|
| 301 |
-
'timestamp':'Time','geo_location':'Location',
|
| 302 |
-
'label':'Diagnosis','score':'Confidence',
|
| 303 |
-
'body_location':'Body Part','prior_consultation':'Prior Consult',
|
| 304 |
-
'pain':'Pain','itch':'Itch'
|
| 305 |
-
})
|
| 306 |
-
.sort_values('Time', ascending=False)
|
| 307 |
-
)
|
| 308 |
-
|
| 309 |
-
else:
|
| 310 |
-
st.header("📂 Dataset Explorer")
|
| 311 |
-
st.write("Preview images from the Harvard Skin Cancer Dataset")
|
| 312 |
-
|
| 313 |
-
# pick up to 15 image files
|
| 314 |
-
image_files = [
|
| 315 |
-
f for f in os.listdir(DATA_DIR)
|
| 316 |
-
if os.path.isfile(os.path.join(DATA_DIR, f))
|
| 317 |
-
and f.lower().endswith((".jpg", ".jpeg", ".png"))
|
| 318 |
-
][:15]
|
| 319 |
-
|
| 320 |
-
for i in range(0, len(image_files), 3):
|
| 321 |
-
cols = st.columns(3)
|
| 322 |
-
for col, fn in zip(cols, image_files[i : i + 3]):
|
| 323 |
-
path = os.path.join(DATA_DIR, fn)
|
| 324 |
-
img = Image.open(path)
|
| 325 |
-
col.image(img, use_container_width=True)
|
| 326 |
-
col.caption(fn)
|
| 327 |
-
|
| 328 |
-
st.sidebar.markdown("---")
|
| 329 |
-
st.sidebar.write("Dataset powered by Harvard Dataverse [DBW86T]")
|
| 330 |
-
st.sidebar.write(f"Model: {MODEL_NAME}")
|
| 331 |
-
st.sidebar.write(f"LLM: {LLM_NAME}")
|
| 332 |
-
|
| 333 |
-
if __name__ == '__main__':
|
| 334 |
-
st.write()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|